首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supraglottal flow exhibits many complex phenomena such as recirculation, jet instabilities, jet attachment to one vocal fold wall, jet flapping, and transition to turbulence. The acoustical relevance of these flow structures to low-frequency voice production was evaluated by disturbing the supraglottal flow field using a cylinder and observing the consequence on the resulting sound pressure field. Despite a significantly altered supraglottal flow field due to the presence of the cylinder, only small changes in sound pressure amplitude and spectral shape were observed. The implications of the results on our understanding of phonation physics and modeling of phonation are discussed.  相似文献   

2.
In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise, the sound spectra from static and flow environments are compared. It turns out that, the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid- and high frequencies in other directions. The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions. It is noted that there is an obvious advantage of computational efficiency for calculating in static environment, compared with that in flow environment. A good agreement is also observed to some extent between the predictions in static environment and measurements of subsonic to supersonic. It is believed that the predictions in static environment could be an effective method to study the propagation of the sound in jet flow and to predict the fine scale turbulence noise accurately in a way as well.  相似文献   

3.
A numerical algorithm for acoustic noise predictions based on solving Lilley's third order wave equation in the time-space domain is developed for a subsonic axisymmetric jet. The sound field is simulated simultaneously with the source field calculation, which is based on a direct solution of the compressible Navier-Stokes equations. The computational domain includes both the nearfield and a portion of the acoustic farfield. In the simulation, the detailed sound source structure is provided by the nearfield direct numerical simulation (DNS), while the sound field is obtained from both the DNS and the numerical solution to the non-linear Lilley's equation. The source terms of Lilley's equation are used to identify the apparent sound source locations in the idealized axisymmetric low-Reynolds number jet. The sound field is mainly discussed in terms of instantaneous pressure fluctuations, frequency spectra, acoustic intensity and directivity. A good agreement is found between the predictions from the axisymmetric Lilley's equation and the DNS results for the sound field. Limitations and perspectives of the simulation are also discussed.  相似文献   

4.
This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ⩽ M ⩽ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that “pairing noise” cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.  相似文献   

5.
In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.  相似文献   

6.
An analysis is made of the production of sound by a hydrofoil with a Coanda wall jet circulation control (CC-) device. Three principal sources are identified in the vicinity of the trailing edge of the hydrofoil. The radiation at very low frequencies is dominated by “curvature noise” generated by the interaction of boundary layer turbulence with the rounded trailing edge of the CC-hydrofoil; this is similar in character and magnitude to the low-frequency component of the conventional trailing edge noise produced by a hydrofoil of the same chord, but with a sharp trailing edge. Higher frequency sound is produced principally at the Coanda jet slot. “Passive slot noise” is caused by the “scattering” by the slot lip of nearfield pressure fluctuations in the turbulent boundary layer of the exterior mean flow past the slot. This is of comparable intensity to high frequency, sharp-edged trailing edge noise. However, the acoustic spectrum is greatly extended to much higher frequencies if the Coanda jet is turbulent; the sound produced by the interaction of this turbulence with the lip tends to dominate the spectrum at frequencies f (Hz) greater than about Uj/h, where h is the slot width and Ujthe Coanda jet speed. Sample numerical results are presented for a typical underwater application that indicate that at this and higher frequencies the slot noise can be 20 dB or more greater than conventional trailing edge noise, although the differences become smaller as the thickness of the slot lip increases.  相似文献   

7.
The turbulent properties of a supersonic jet were studied related to a high level of pressure pulsation found in model jets of a reentry flight vehicle approaching the landing ground. This study comprised measurements of total pressure at a small-size target using a dynamic pressure probe placed in a free jet. The most comprehensive data about jet turbulence can be obtained by direct transformation of the pressure reading at the stagnation point near the target into the normalized velocity. The oscillogram of normalized velocity produces the velocity average value, root-mean-square value as well as turbulence intensity and turbulence spectrum. It was demonstrated that a high level of turbulence for a high-head jet retains along the supersonic core length and at the beginning of subsonic interval.  相似文献   

8.
The Euler approach is used for studying the structure of a flow and the propagation of a disperse impurity in a submerged two-phase jet for small values of the mass concentration of particles (M L1 = 0 to 0.5) upon a variation of the size and material of particles in a wide range. The effect of particles on the propagation of a two-phase jet, gas turbulence, and solid phase dispersion is analyzed. The addition of particles decreases the jet opening angle, increases the jet range, suppresses turbulence, and deteriorates turbulent mixing with the surrounding submerged space. It is shown that at the first stage, particle accumulation effects (pinching) in the axial region of the jet appear upon an increase in the particle size and the density of the particle material. Then, upon an increase in the inertia of particles, pinching changes to intense scattering of the disperse phase in the initial cross sections of the jet. The results are compared with the results of measurements for mono- and polydisperse two-phase jet flows.  相似文献   

9.
In recent years researchers in jet turbulence and jet noise have become increasingly interested in what is termed “large scale coherent jet structures”. There is now considerable evidence that azimuthally coherent structures can be generated by acoustically forcing a jet from upstream. However, the evidence for such structures in unforced jets, except close to the nozzle at low Reynolds numbers, is, at best, circumstantial. The role of such structures in subsonic jet noise production is also completely unproven. In an attempt to establish a link between azimuthally coherent structures and the jet noise field a number of experimenters have recently made azimuthal cross-correlation measurements of either the near field pressure or far field noise, and used the observed coherence to infer the existence of an azimuthally coherent source field. The term azimuthally coherent is used here to infer that the source region is dominated by low order azimuthal components, with relatively little contribution coming from the higher azimuthal components. The purpose of this paper is to question the interpretation of that data. Specifically the sound field generated by a simple ring source with various types of azimuthal coherence is considered theoretically. It is shown that the azimuthal coherence of both the near and far field pressures is principally a function of the Helmholtz number and in many cases of practical interest is relatively insensitive to any coherent structure of the source.  相似文献   

10.
In the present study, patch near-field acoustical holography was used in conjunction with a multireference, cross-spectral sound pressure measurement to visualize the sound field emitted by a subsonic jet and to predict its farfield radiation pattern. A strategy for microphone array design is described that accounts for the low spatial coherence of aeroacoustic sources and for microphone self-noise resulting from entrained flow near the jet. In the experiments, a 0.8-cm-diameter burner was used to produce a subsonic, turbulent jet with a Mach number of 0.26. Six fixed, linear arrays holding eight reference microphones apiece were disposed circumferentially around the jet, and a circular array holding sixteen, equally spaced field microphones was traversed along the jet axis to measure the sound field on a 30-cm-diameter cylindrical surface enclosing the jet. The results revealed that the jet could be modeled as a combination of eleven uncorrelated dipole-, quadrupole-, and octupole-like sources, and the contribution of each source type to the total radiated sound power could be identified. Both the total sound field reconstructed in a three-dimensional space and the farfield radiation directivity obtained by using the latter model were successfully validated by comparisons to directly measured results.  相似文献   

11.
The standing wave in the near field of the screech jet exhausted from a nozzle with a hard plate works on the jet flow as the forcing wave by the location of a reflecting plate, and then jet flow is considered to be changed. Moreover, the reflector location from the nozzle changes the sound pressure contours of the near field. Intensity maps of the screech tone which indicate the propagation to the jet axial direction or the radial direction of the jet by the presence of the reflector plate have not been explored. In the present paper, acoustic characteristics in the near field of the screech tone with the reflecting plate are studied using an optical wave microphone, which can measure the sound propagating for both vertical and horizontal directions to the jet axis. As a result, the standing wave in the near field of the screech jet with the reflector has two types: One is the standing wave between the hydrodynamic pressure fluctuation propagating jet downstream and the sound pressure propagating upstream, and the other is the standing wave by the difference between the wavelength of the sound wave and the wavelength at the place close to the jet.  相似文献   

12.
Experiments were performed to study the production of broadband sound in confined pulsating jets through orifices with a time-varying area. The goal was to better understand broadband sound generation at the human glottis during voicing. The broadband component was extracted from measured sound signals by the elimination of the periodic component through ensemble averaging. Comparisons were made between the probability density functions of the broadband sound in pulsating jets and of comparable stationary jets. The results indicate that the quasi-steady approximation may be valid for the broadband component when the turbulence is well established and the turbulence kinetic energy is comparatively large. A wavelet analysis of the broadband sound showed that random sound production was modulated at the driving frequency. Two distinct sound production peaks were observed during one cycle, presumably associated firstly with jet formation and secondly with flow deceleration during orifice closing. Most high-frequency sound was produced during the closing phase. Deviations from quasi-steady behavior were observed. As the driving frequency increased, sound production during the opening phase was reduced, possibly due to the shorter time available for turbulence to develop. These results may be useful for better quality voice synthesis.  相似文献   

13.
Inhomogeneity and anisotropy are intrinsic characteristics of daytime and nighttime atmospheric turbulence. For example, turbulent eddies are often stretched in the direction of the mean wind, and the turbulence statistics depends on the height above the ground. Recent studies have shown that the log-amplitude and phase fluctuations of plane and spherical sound waves are significantly affected by turbulence inhomogeneity and anisotropy. The present paper is devoted to studies of the mean sound field and the coherence functions of plane and spherical sound waves propagating through inhomogeneous anisotropic turbulence with temperature and velocity fluctuations. These statistical moments of a sound field are important in many practical applications, e.g., for source detection, ranging, and recognition. Formulas are derived for the mean sound field and coherence function of initially arbitrary waveform. Using the latter formula, we also obtained formulas for the coherence functions of plane and spherical sound waves. All these formulas coincide with those known in the literature for two limiting cases: homogeneous isotropic turbulence with temperature and wind velocity fluctuations, and inhomogeneous anisotropic turbulence with temperature fluctuations only. Using the formulas obtained, we have numerically shown that turbulence inhomogeneity significantly affects the coherence functions of plane and spherical sound waves.  相似文献   

14.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

15.
M. Can 《实验传热》2013,26(3):171-190
Impinging air jets are widely used in industry, for heating, cooling, drying, etc., because of the high heat transfer rates which are developed in the impingement region. In this study, two methods of enhancing jet heat transfer have been investigated, namely, by using turbulence promoters to artificially raise the turbulence level, and by using a loudspeaker to excite the jet acoustically. In both these cases, the increases in heat transfer from enhancement were found to be modest. Some experimental hot-wire anemometry data obtained for free and impinging air jet flows are presented here. The existence of a relationship between turbulence intensity and heat transfer mechanism is also discussed.  相似文献   

16.
The sound intensity of jet noise from aircraft in flight is derived in a co-ordinate system fixed to the jet engine. For this reason a convected form of the Lighthill equation is solved, with special care taken of jet temperature effects. Under certain assumptions and approximations, the in-flight and static sound intensities are related in a simple manner. Thus the directivity of jet noise in flight can be predicted. The theoretical result is checked with measurements. The agreement is remarkably good.  相似文献   

17.
High intensity pulsed ultrasound, interacting with microbubble contrast agents, is potentially useful for drug delivery, cancer treatment, and tissue ablation, among other applications. To establish the fundamental understanding on the interaction of a microbubble (in an infinite volume of water) with an ultrasound pressure field, a numerical study is performed using the boundary element method. The response of the bubble, in terms of its shape at different times, the maximum bubble radius obtained, the oscillation time, the jet velocity, and its translational movement, is studied. The effect of ultrasound intensity and initial bubble size is examined as well. One important outcome is the determination of the conditions under which a clear jet will be formed in a microbubble in its interaction with a specific sound wave. The high speed jet is crucial for the aforementioned intended applications.  相似文献   

18.
Results of an investigation in which turbomachinery rotor sound spectra were correlated with aerodynamic measurements of the inlet turbulence, strut wake, and vortex flow strengths are reported. Aerodynamic measurements included mean velocity profiles, turbulence intensity, and axial length scales. Inlet turbulence data indicate that the major effect of flow contraction appears to be the elongation of turbulent eddies. Eddies of this size dominate the blade passing frequency (BPF) tones. Decreasing eddy size by use of a grid revealed vortex flow strength to be the second major sound source. A doubling of vortex flow strength produced a 6 dB increase in the SPL of the first BPF. The sound pressure level showed less than a 2 dB change with doubling of strut wake turbulence intensity or velocity defect. A discussion of the relative importance of various sources of noise due to flow non-uniformities at the inlet is given.  相似文献   

19.
The radiation of sound from free turbulence is known to be dominated at sufficiently low Mach numbers by the unsteady dissipation of temperature or composition gradients, where these are present in the flow. Scaling laws for dissipation noise are developed, with particular application to jet mixing. Existing noise measurements on hot air jets at velocities down to 0·25c0 appear to be better explained by a dipole mechanism (with intensity proportional to U6 than by unsteady thermal dissipation (for which the predicted intensity varies as U4).  相似文献   

20.
A new system of sound intensity measurement for impulse field in the room was proposed. This measurement system consists of a repeatable inspiriting sound source and a microphone fixed on a slowly rotating platform, which is equivalent to a circle microphone array composed of many perfectly matched microphones. The test principle was presented and typical application was described. Based upon this system the sound intensity measurement for impulse field in the room was realized. Therefore, not only time but also spatial information of room impulse response can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号