首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of fetal bovine serum (FBS) on carboxyfluorescein (CF) leakage from poly(ethylene glycol)-grafted liposomes (PEG-liposomes) were investigated. PEG-liposomes were prepared from dipalmitoylphosphatidylcholine (DPPC) and distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (DSPE-PEG) having PEG molecular weights of 1000, 2000, 3000 and 5000. The presence of FBS dramatically increased CF leakage from liposomes near the gel-liquid crystalline phase transition temperature, but had little effect at lower and higher temperatures. The CF leakage from PEG-liposomes whose molecular weight in PEG units was above 2000 was suppressed compared with that of liposomes without PEG. And, there was hardly any difference in the effect of the PEG molecular weight of the PEG-lipids on CF leakage from PEG-liposomes with FBS when PEG-lipids with a molecular weight in PEG units above 2000 were used. On the other hand, the leakage of CF from liposomes containing 0.145 mol fractions of DSPE-PEG1000 was larger than that of liposomes without PEG. Furthermore, the effects of FBS on the cooperative units of lipid molecules during the gel-liquid crystalline phase transition of liposomes were examined. However, the cooperative units of liposomes with FBS had little change compared with that of liposomes without FBS.  相似文献   

2.
To stabilize a phospholipid liposome, addition of various water-soluble polymers into a liposomal aqueous suspension was investigated. The water-soluble polymers were poly(ethylene oxide) (PEO), poly(N-vinyl pyrrolidone) (PVPy) and poly[2-methacryloyloxyethyl phosphorylcholine(MPC)], and poly[MPC-co-n-butyl methacrylate(BMA)]. The gel–liquid crystal transition temperature (Tc) of the diparmitoylphosphatidylcholine (DPPC) liposome was not changed by addition of these polymers significantly. However, membrane fluidity of DPPC liposome treated with water-soluble polymers, which was measured with fluorescence probe, depended on the chemical structure of the water-soluble polymers. In the case of PEO and PVPy, the temperature dependence of membrane fluidity was the same as that of the original DPPC liposome, on the other hand, poly(MPC) and poly(MPC-co-BMA) induced a rise in the temperature where an increase in the membrane fluidity was observed. The release of carboxy fluorescein from the DPPC liposome was suppressed by the addition of the MPC polymers. The liposomes in the MPC polymer solution were stable compared with those in water when plasma was added into the suspension. Interactions with stabilized liposome with blood cells such as platelets and erythrocytes were evaluated. Activation of platelets in contact with liposome covered with poly(MPC) or poly(MPC-co-BMA) was less than PEO-stabilized liposome. On the other hand, no hemolysis of erythrocytes was observed when every polymer-treated liposome was added in the suspension of erythrocytes. Based on these results, the MPC polymers could interact with the liposome surface, adsorb on the liposomes and stabilize them, and had no adverse effect to the blood cells even when they were in a physiological environment.  相似文献   

3.
In the present study, mixed liposomes of dihexadecyl phosphate sodium salt:phosphatidylcholine:cholesterol at a 1:19:9.5 molar ratio were allowed to interact with poly-L-arginine at temperatures below and above the main phase transition of the liposomal membrane. The interaction led to the formation of aggregates, which gradually increased in size and eventually precipitated. It was, however, possible, during the initial stage of the experiments, when the ratio of guanidinium group relative to phosphate was smaller than ca. 40%, to determine their size and charge and observe their morphology in aqueous dispersion. Fluorescence experiments established that the liposomes are not ruptured during their interaction with poly-L-arginine. Instead, they are attached at the polypeptide chain through the guanidinium-phosphate complementary pair. Fluorescence quenching experiments indicated that the poly-L-arginine chain is accessible for interaction with iodides dissolved in the aqueous phase when the temperature of the liposomal dispersion is below the main lipid phase transition. It is, however, partitioned in the interior of the membrane at temperatures exceeding this main lipid phase transition.  相似文献   

4.
The role of water structure around model membrane systems (e.g., liposomes) on phase transition of the lipid dipalmitoyl phosphatidylcholine was investigated. Water structure was altered by changing pH and by addition of solutes which are known breakers and makers of water structure. The structure makers broadened the zone of transition and changed the overall phase transition profile, while the main effect of structure breakers was to cause a shift in the transition temperature. The observed variation of Chapman transition temperature and broadening of zone of transition with varying pH is discussed in terms of altered water structure around the membrane–aqueous interface. Binding studies with the dye 1-anilino-8-napthalene sulfonate showed that structure makers or breakers did not bind to the liposome surface directly. Thus the structure makers and breakers act on the membranes perhaps by altering the water structure differentially. Possible associated mechanisms of action are discussed.  相似文献   

5.
The thermotropic phase behavior of cationic liposomes in mixtures of two of the most investigated liposome-forming double-chain lipids, dioctadecyldimethylammonium bromide (DODAB) and didodecyldimethylammonium bromide (DDAB), was investigated by differential scanning calorimetry (DSC), turbidity, and Nile Red fluorescence. The dispersions were investigated at 1.0 mM total surfactant concentration and varying DODAB and DDAB concentrations. The gel to liquid-crystalline phase transition temperatures (Tm) of neat DDAB and DODAB in aqueous dispersions are around 16 and 43 degrees C, respectively, and we aim to investigate the Tm behavior for mixtures of these cationic lipids. Overall, DDAB reduces the Tm of DODAB, the transition temperature depending on the DDAB content, but the Tm of DDAB is roughly independent of the DODAB concentration. Both DSC and fluorescence measurements show that, within the mixture, at room temperature (ca. 22 degrees C), the DDAB-rich liposomes are in the liquid-crystalline state, whereas the DODAB-rich liposomes are in the gel state. DSC results point to a higher affinity of DDAB for DODAB liposomes than the reverse, resulting in two populations of mixed DDAB/DODAB liposomes with distinctive phase behavior. Fluorescence measurements also show that the presence of a small amount of DODAB in DDAB-rich liposomes causes a pronounced effect in Nile Red emission, due to the increase in liposome size, as inferred from turbidity results.  相似文献   

6.
The interaction of cyclodextrins (CDs) with L-alpha-dipalmitoyl phopsatidyl choline (DPPC), L-alpha-distearoyl phosphatidyl choline (DSPC), and L-alpha-dimyristoyl phosphatidyl choline (DMPC) unilamellar liposomes was investigated by the leakage of carboxylfluorescein (CF) entrapped in the inner aqueous phase of liposomes, at 25 degrees C (DPPC and DSPC liposomes) and at 5 degrees C (DMPC liposomes). The efficiency of CDs for CF leakage was remarkable in the order of heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD) > alpha-CD > heptakis (2,3,6-tri-O-methy)-beta-CD (TOM-beta-CD) from DPPC liposomes, in the order of DOM-beta-CD > TOM-beta-CD > alpha-CD from DSPC liposomes and in the order of alpha-CD > DOM-beta-CD > TOM-beta-CD from DMPC liposomes. The other CDs used in the present studies, beta-CD, 2-hydroxylpropyl beta-CD, and gamma-CD scarcely induced the CF leakage from above the three liposomes. From the profiles of % CF leakage, together with measurements of differential scanning calorimetry, it was found that hydrophobic DOM-beta-CD penetrates the matrix of the liposomes to interact with them as well as TOM-beta-CD, and that less hydrophobic alpha-CD exists at the surface of the membrane to interact with the liposomes. Further, it was found that the interaction of CDs with liposomes changes depending not only on the length of fatty acid chain of phospholipid (condensation force and hydrophobicity) but also the hydrophobicity and the cavity size of CD.  相似文献   

7.
Liposomes suspended in aqueous electrolyte solutions can adhere at mercury electrodes. The adhesion is a complex process that starts with the docking and opening and leads to a spreading, finally resulting in the formation of islands of adsorbed lecithin molecules. The adhesion process can be followed by chronoamperometry, and a detailed analysis of the macroscopic and microscopic kinetics can be performed yielding rate constants and activation parameters. By using giant unilamellar liposomes and multilamellar liposomes, the effect of lamellarity and liposome size could be elucidated for liposomes in the liquid crystalline, gel, and superlattice phase states. Below the phase transition temperature, the time constant of opening of the liposomes (i.e., the irreversible binding of the lecithin molecules on the preliminary contact interface liposome|mercury and the therewith associated disintegration of the liposome membrane on that spot) is shown to be strongly size dependent. The activation energy, however, of that process is size independent with the exception of very small liposomes. That size dependence of time constants is a result of the size dependence of the initial contact area. The time constant and the activation energies of the spreading step exhibit a strong size dependence, which could be shown to be due to the size dependence of rate and activation energy of pore formation. Pore formation is necessary to release the solution included in the liposomes. This understanding was corroborated by addition of the pore inducing peptide Mastoparan X to the liposome suspension. The obtained results show that electrochemical studies of liposome adhesion on mercury electrodes can be used as a biomimetic tool to understand the effect of membrane properties on vesicle fusion.  相似文献   

8.
Small unilamellar liposomes were prepared in an aqueous medium by the sonication of phospholipids containing diene or triene groups in their hydrocarbon acyl chains. These liposomes were polymerized by gamma-ray irradiation. Conversion of polymerization was successively followed by UV spectrometry. Diene-type lipid liposomes were revealed for which a gamma-ray dose of 0.8 Mrad was required for complete polymerization and which were polymerized more easily than triene-type lipid liposomes. Triene-type lipids required 2.3 Mrad gamma ray to polymerize them completely. Contrary to UV-irradiation polymerization, there was no concentration dependence on the polymerization. Structure of the polymerized liposomes were confirmed by electron microscopy as small unilamellar liposomes. Study on the leakage of fluorescein from inner aqueous phase of the polymerized liposomes revealed that polymerized triene-type liposomes were relatively more stable than the polymerized diene-type liposomes.  相似文献   

9.
The fullerene-exchange reaction from a cyclodextrin cavity to liposomes represents one of the best methods to prepare lipid membrane-incorporated [70]fullerenes (C(70)). The C(70)-exchange reaction occurred completely at temperatures above the phase transition temperature (T(m)) of the liposomes; however, lowering the temperature to below the T(m) led to C(70) aggregation outside the liposomes. This observation has limited the development of more functional LMIC(70) using a variety of liposome compositions. In this paper, this reaction was found to occur efficiently by the addition of small amounts of lipids bearing a π-moiety. The π-moieties act as a gate when hydrophobic C(70) migrates into the hydrophilic liposome surface. Therefore, the π-moieties should exist in the polar head groups of the lipids and the C(70)-exchange reaction can be controlled by pH.  相似文献   

10.
1-Palmitoyl-2(2,4-octadecadienoyl)-sn-glycero-3-phosphocholine (POPC), a polymerizable lipid that contains one diene group in only a 2-acyl chain, was polymerized as liposome in an aqueous medium. Polymerization was initiated by water-insoluble azobisisobutyronitrile (AIBN), or water-soluble azobis(2-amidinopropane) dihydrochloride (AAPD). AIBN was mixed with monomeric lipids, and the mixture was dispersed in an aqueous medium by sonication to prepare AIBN-containing monomeric lipid liposomes. On the other hand, AAPD was simply added to the liposome suspension. The POPC liposomes were easily polymerized by the addition of AAPD, a water-soluble radical initiator, but few were polymerized by AIBN. The results suggested that the diene group in the 2-acyl chain was in an aqueous phase and, therefore, easily polymerized by a water-soluble radical initiator. The polymerized POPC liposomes were revealed to be more stable than those of monomeric ones because the scattered-light intensity from the polymerized POPC liposome suspension changed a little by the addition of Triton X-100. For only the polymerized ones, the liposome structure was confirmed by TEM after addition of an excess amount of Triton X-100.  相似文献   

11.
The combined use of a pore-forming amphiphile, 1 (derived from lysine, cholic acid, and spermine), and thermally sensitive liposomes (made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) to create "thermally gated liposomes" (TGLs) has been demonstrated. Thus, at temperatures that lie above the gel to liquid-crystalline phase transition temperature of DPPC (i.e., 41 degrees C), 1 creates pores within DPPC membranes through which entrapped aqueous solutes, such as carboxyfluorescein, can readily pass. Below this temperature, efflux rates are greatly reduced. The potential of TGLs as devices for the targeted delivery of therapeutic agents is briefly discussed.  相似文献   

12.
pH-sensitive liposomes composed of phosphatidylethanolamine and fatty acid   总被引:1,自引:0,他引:1  
pH-induced destabilization, aggregation and fusion of liposomes composed of phosphatidylethanolamine (PE) and various fatty acid were studied. Destabilization was examined as a fluorescent change caused by leakage of coencapsulated aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and N,N-p-xylylenebispyridinium bromide (DPX). Fusion was monitored by two different methods, that is, intermixing assay of internal aqueous contents of liposomes, and lipid dilution assay of liposomes labeled with fluorescent phospholipids. Contents leakage from liposomes was observed by lowering the pH, and pH where the leakage began depended on fatty acid used. Fifty percent leakage of contents from PE liposomes containing alpha-hydroxypalmitic acid or alpha-hydroxy-stearic acid was observed at pH 5.5, that from liposomes containing stearic acid or palmitic acid was observed at pH 6.5-6.7, and that from ricinoleic acid at pH 7.2. Aggregation and fusion of the respective liposomes also occurred at a similar pH region. These results were interpreted by the notion that the protonation of the fatty acid triggers a series of pH-sensitive events. The liposomes developed in this study may be useful as a drug carrier which could release the contents in response to pH changes in their environment.  相似文献   

13.
The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.  相似文献   

14.
A new inisurf (acting as surfactant and initiator) molecule for ring-opening metathesis polymerization (ROMP) was synthesized and used in aqueous solution in order to control the size and shape of polymer nodules grown from liposomes. Nodules were observed to grow in size with conversion of monomer, and depending on the monomer used, they adopted either a spherical or comet-like shape. Here, we investigate polymer production from a liposome surface. We use a hydrophobic derivative of the Grubbs catalyst positioned at the liposome surface to allow for ROMP of monomers dissolved in the aqueous outer phase. We obtain nodules of polymer that can grow up to tens of micrometers, unveiling new efficient possibilities of polymerization from a membrane in an aqueous solution.  相似文献   

15.
Immobilization of liposomes on hydrophobized Sephacryl gel and controlled detachment of the liposomes from the gel were examined. The gel was chemically modified and bore octyl, hexadecyl or cholesteryl moiety via disulfide linkage as anchors to liposomal bilayer membrane. Upon interaction with the gel, egg phosphatidylcholine liposomes were successfully immobilized onto the gel. The gel with cholesteryl moiety showed 1.7 times higher liposome immobilization per anchor moiety than the gels with the alkyl moieties. The immobilization of liposomes on the gel was stable, and no significant spontaneous detachment of phospholipid or leakage of fluorescein isothiocyanate-conjugated dextran encapsulated in the immobilized liposomes was observed in 24h. Reductive cleavage of the disulfide linkage by dithiothreitol resulted in detachment of the liposomes from the gel. The majority of the detached liposomes were found encapsulating the dextran derivative, and these liposomes should have kept their structural integrity throughout the immobilization and the detachment processes. The release of the liposomes was insignificant until the ratio of the dithiothreitol to the hydrophobic anchor reached a threshold. The presence of the threshold suggests that the immobilization of liposomes should require a certain minimum number of the hydrophobic moieties anchored in the liposomal membrane. By applying the present immobilization-detachment system, preparation of liposomes encapsulating the dextran derivative without using costly gel filtration or ultracentrifugation procedure was successfully demonstrated.  相似文献   

16.
《Thermochimica Acta》1987,122(1):117-122
Differential scanning calorimetry has been used to investigate the thermotropic behaviour of DPPC liposomes in the presence of different amounts of retinoids in a study of the sites concerned in the mutual lipid-retinoid interaction. The perturbing effect of retinal and retinol on DPPC liposome gel-liquid crystal phase transition has been related to the difference in the polar end group of retinoid. The hydrophilic polar group prevalence over the apolar tail has been evidentiated. Membrane fluidity increases by increasing the retinoid amount. These liposomes displayed a phase separation at high retinal or retinol concentrations.  相似文献   

17.
The resistive-pulse method was used to monitor the pressure-driven translocation of multilamellar liposomes with radii between 190 and 450 nm through a single conical nanopore embedded in a glass membrane. Liposomes (0% and 5% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (sodium salt) in 1,2-dilauroyl-sn-glycero-3-phosphocholine or 0%, 5%, and 9% 1,2-dipalmitoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine) were prepared by extrusion through a polycarbonate membrane. Liposome translocation through a glass nanopore was studied as a function of nanopore size and the temperature relative to the lipid bilayer transition temperature, T(c). All translocation events through pores larger than the liposome, regardless of temperature, show translocation times between 30 and 300 μs and current pulse heights between 0.2% and 15% from the open pore baseline. However, liposomes at temperatures below the T(c) were captured at the pore orifice when translocation was attempted through pores of smaller dimensions, but squeezed through the same pores when the temperature was raised above T(c). The results provide insights into the deformation and translocation of individual liposomes through a porous material.  相似文献   

18.
Liposomes composed of Ceramide 3, [2S,3S,4R-2-stearoylamide-1,3,4-octadecanetriol], and L-alpha-dipalmitoylphosphatidylcholine (DPPC) were prepared by varying the amount of Ceramide 3, and the effects of Ceramide 3 on the liposome formation, particle size, dispersibility, microviscosity and phase transition temperature were examined by means of a microscopy, a dynamic light scattering method, a fluorescence polarization method, a differential scanning calorimetry (DSC) and so on. All the DPPC was able to contribute to the formation of liposomes up to 0.130 mol fraction of Ceramide 3. The particle size of liposomes was almost unaffected by the addition of Ceramide 3. The dispersibility of liposomes containing Ceramide 3 was maintained for at least 15 days. The microviscosity of liposomal bilayer membranes in the liquid crystalline state was increased with increasing the mole fraction of Ceramide 3, while that in the gel state was independent of the mole fraction of Ceramide 3. The phase transition temperature from gel to liquid crystalline states of DPPC bilayer membranes was shifted upwards with the addition of Ceramide 3, indicating a cooperative interaction between DPPC and Ceramide 3 molecules. However, a sharp DSC peak became broad and split at higher mole fractions of Ceramide 3, suggesting a phase separation in the mixed DPPC/Ceramide 3 liposomal bilayer membranes. These phenomena were suggested to be related to the previously observed fact for the mixed DPPC/Ceramide 3 monolayers that Ceramide 3 interacts with DPPC in the liquid-expanded phase with consequent phase separation accompanied with domain formation.  相似文献   

19.
合成了两种具有氟碳疏水性链的磷脂, 其极性部分分别为胆碱和磷酸根. 超声分散下, 上述两种磷脂均可形成腈质体, 以电子显微镜观察和动态光散射测定得到胆碱形成的脂质体的尺寸在32-37nm左右. 而对后者的光散射测定得出的尺寸较大并与溶液的pH值有关. 具有胆极性基的氟碳脂质体如同相应的碳氢磷脂一样, 具有包容水溶性受物的能力,但透光性更好. 从荧光探针的荧光强度对温度变化的研究指出, 在53℃左右胆碱型氟碳脂质体发生了相变.  相似文献   

20.
Thermotropic phase behaviors of paeonol-encapsulated liposomes containing stigmasterol or cholesterol have been investigated by differential scanning calorimetry. We compared the thermotropic phase behavior of pure dipalmitoylphosphatidylcholine (DPPC) liposomes, sterol/DPPC liposomes, and paeonol/sterol/DPPC liposomes increasing the ratio of paeonol to sterol from 0 to 1, by analyzing the calorimetric parameters of main phase transition of liposomes including phase transition temperature (onset temperature and peak temperature) and phase transition cooperativity. The results showed that paeonol could incorporate into the hydrophobic region of DPPC, thus, decrease phase transition temperature of DPPC. Though stigmasterol interacts with DPPC less favorably than cholesterol, thermotropic phase behavior of paeonol/cholesterol/DPPC liposomes and that of paeonol/stigmasterol/DPPC liposomes are very similar. A phase separation occurred when the molar ratio of paeonol to sterol reached 1:1 in paeonol-encapsulated liposomes, where a paeonol-rich domain coexisted with a sterol-rich domain. The packing order of acyl chains of DPPC in sterol-rich domain is a little higher than that in paeonol-rich domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号