首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by providing preliminary steps to understand the conception of quantum gravity, in this paper, we study the phase structure of a semiclassical gravitational system. We investigate the stability conditions and phase transition of charged black holes in massive gravity via canonical ensemble and geometrical thermodynamic approaches. We point out the effects of massive parameter on stability conditions of these black holes and show how massive coefficients affect the phase transition points of these black holes. We also study the effects of boundary topology on thermodynamical behavior of the system. In addition, we give some arguments regarding the role of higher dimensions and highlight the effect of the electric charge in thermodynamical behavior. Then, we extend our study to geometrical thermodynamic approach and show that it can be a successful method for studying the black hole phase transition. At last, by employing the relation between thermodynamical pressure and cosmological constant, critical behavior of the system and the effects of different parameters on critical values are investigated.  相似文献   

2.
In this paper, we first obtain the higher-dimen-sional dilaton–Lifshitz black hole solutions in the presence of Born–Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of \(z=n+1\) and \(z\ne n+1\) where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking–Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau–Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case \( z\ge 2\). For \(z<2\), it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while for large black holes, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz black holes for different values of z. We observe that small black holes are thermally unstable in some situations. Also, the behavior of the correlation between possible black hole molecules for large black holes is the same as for the linearly charged case. In both the linearly and the BI charged cases, for some choices of the parameters, the black hole system behaves like a Van der Waals gas near the transition point.  相似文献   

3.
Understanding the dynamic process of black hole thermodynamic phase transitions at a triple point is a huge challenge. In this paper, we conduct the first investigation of dynamic phase behavior at a black hole triple point. By numerically solving the Smoluchowski equation near the triple point for a six-dimensional charged Gauss-Bonnet anti-de Sitter black hole, we report that initial small, intermediate, or large black holes can transit to the other two coexistent phases at the triple point, indicating that thermodynamic phase transitions can indeed occur dynamically. More significantly, we observe characteristic weak and strong oscillatory behavior in this dynamic process, which can be understood from an investigation of the rate of first passage from one phase to another. Our results further an understanding of the dynamic process of black hole thermodynamic phase transitions.  相似文献   

4.
In the extended phase space, we investigate the rainbow gravity-corrected thermodynamic phenomena and phase structure of the Schwarzschild black hole surrounded by a spherical cavity. The results show that rainbow gravity has a very significant effect on the thermodynamic phenomena and phase structure of the black hole. It prevents the black hole from total evaporation and leads to a remnant with a limited temperature but no mass. Additionally, we restore the PV criticality and obtain the critical quantities of the canonical ensemble. When the temperature or pressure is smaller than the critical quantities, the system undergoes two Hawking-Page-like phase transitions and one first-order phase transition, which never occurs in the original case. Remarkably, our findings demonstrate that the thermodynamic behavior and phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space are analogous to those of the Reissner–Nordström anti-de Sitter black hole. Therefore, rainbow gravity activates the effect of electric charge and cutoff factor in the evolution of the black hole.  相似文献   

5.
For charged black holes in Ho?ava–Lifshitz gravity, a second order phase transition takes place in extended phase space where the cosmological constant is taken as thermodynamic pressure. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. Once we know the continuity of the first derivatives of the Gibbs free energy, we show that all the Ehrenfest equations are readily satisfied. We study the effect of the perturbation of the cosmological constant as well as the perturbation of the electric charge on thermodynamic stability of Ho?ava–Lifshitz black hole. We also use thermodynamic geometry to study phase transition in extended phase space. We investigate the behavior of scalar curvature of Weinhold, Ruppeiner, and Quevedo metric in extended phase space of charged Ho?ava–Lifshitz black holes. It is checked if these curvatures could reproduce the result of specific heat for the phase transition.  相似文献   

6.
In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.  相似文献   

7.
Bekenstein proposed that the spectrum of horizon area of quantized black holes must be discrete and uniformly spaced. We examine this proposal in the context of spherically symmetric charged black holes in a general class of gravity theories. By imposing suitable boundary conditions on the reduced phase space of the theory to incorporate the thermodynamic properties of these black holes and then performing a simplifying canonical transformation, we are able to quantize the system exactly. The resulting spectra of horizon area, as well as that of charge are indeed discrete. Within this quantization scheme, near-extremal black holes (of any mass) turn out to be highly quantum objects, whereas extremal black holes do not appear in the spectrum, a result that is consistent with the postulated third law of black hole thermodynamics.  相似文献   

8.
In this study, the quantum gravity effect on the tunnelling radiation of charged massive spin-0 scalar particle from \(2+1\) dimensional charged rotating Banados–Teitelboim–Zanelli (BTZ) black hole is looked into by using the Hamilton–Jacobi approach. For this, we calculate the modified Hawking temperature of the black hole by using the modified Klein–Gordon equation based on the generalized uncertainty principle, and we noticed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the angular momentum, energy, charge and mass of the tunnelling scalar particle. Using the modified Hawking temperature, we discussed the stability of the black hole in the context of the modified heat capacity, and observed that it might undergo both first and 1 phase transitions in the presence of the quantum gravity effect, but just a first-type transition in the absence of the quantum gravity effect. Furthermore, we investigated the modified Hawking temperature of the black hole by using the tunnelling processes of the charged massive Dirac and vector boson particles. We observed that scalar, Dirac and vector particles are tunnelled from the black hole completely differently from each other in the presence of the quantum gravity effect.  相似文献   

9.
There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum of black holes in four and higher spacetime dimensions. As a consequence, our result is consistent with the Bekenstein–Hawking entropy of a black hole. Moreover, we also give a possible quantum gravity explanation of the universal ln 3 behavior of the quasinormal mode spectrum.  相似文献   

10.
We study the PV criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all \(d\ge 6\)-dimensional spacetime when the coupling coefficients \(c_i m^2\) of massive potential satisfy some certain conditions.  相似文献   

11.
We analyze certain aspects of BTZ black holes in massive theory of gravity. The black hole solution is obtained by using the Vainshtein and dRGT mechanism, which is asymptotically AdS with an electric charge. We study the Hawking radiation using the tunneling formalism as well as analyze the black hole chemistry for such system. Subsequently, we use the thermodynamic pressure-volume diagram to explore the efficiency of the Carnot heat engine for this system. Some of the important features arising from our solution include the non-existence of quantum effects, critical Van der Walls behaviour, thermal fluctuations and instabilities. Moreover, our solution violates the Reverse Isoperimetric Inequality and, thus, the black hole is super-entropic, perhaps which turns out to be the most interesting characteristics of the BTZ black hole in massive gravity.  相似文献   

12.
13.
It has been shown recently that information is lost in the Hawking radiation of the linear dilaton black holes in various theories when applying the tunneling formalism of Parikh and Wilczek without considering quantum gravity effects. In this paper, we recalculate the emission probability by taking into account the log-area correction to the Bekenstein-Hawking entropy and the statistical correlation between quanta emitted. The crucial role of the quantum gravity effects on the information leakage and black hole remnant is highlighted. The entropy conservation of the linear dilaton black holes is discussed in detail. We also model the remnant as an extreme linear dilaton black hole with a pointlike horizon in order to show that such a remnant cannot radiate and its temperature becomes zero. In summary, we show that the information can also leak out of the linear dilaton black holes together with preserving unitarity in quantum mechanics.  相似文献   

14.
We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient α2<0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k=-1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k=1, we found that the black hole has an intermediate unstable phase for D=7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient \tilde{\alpha} is under a critical value.For D≧ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient \tilde{\alpha} is under a critical value for D=8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with flat horizon do not depend on the Lovelock coefficients and are the same as those of black holes in general gravity.  相似文献   

15.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

16.
According to a corrected dispersion relation proposed in the study on the string theory and quantum gravity theory, the Rarita-Schwinger equation was precisely modified, which resulted in the Rarita-Schwinger-Hamilton-Jacobi equation. Using this equation, the characteristics of arbitrary spin fermion quantum tunneling radiation from non-stationary Kerr-de Sitter black holes were determined. A number of accurately corrected physical quantities, such as surface gravity, chemical potential, tunneling probability, and Hawking temperature, which describe the properties of black holes, were derived. This research has enriched the research methods and enabled increased precision in black hole physics research.  相似文献   

17.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

18.
Shuxuan Ying 《中国物理C(英文版)》2020,44(12):125101-125101-9
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.  相似文献   

19.
20.
This paper deals in the thermodynamic properties of Einstein-Gauss-Bonnet and Einstein-Yang-Mills-Gauss-Bonnet black holes. It exhibits the various stable and unstable phases of the black holes in these two modified gravity theories. In the first section, that reveals the various aspects of Einstein-Gauss-Bonnet black holes, we chose to study the changes in the Hawking Temperature with variations in the radius of event horizon (r) and charge (Q); and tried to justify them physically. Secondly in case of Einstein-Yang-Mills-Gauss-Bonnet black holes, we have attempted to compare the changes in the various thermodynamic parameters with varying r and Q; with the Einstein-Gauss-Bonnet black holes at a macroscopic level. Here we have considered the Yang Mills tensor, electromagnetic Lagrangian added to the action integrand. Again this very work deals in drawing out the similarities between these two types of black holes, thereby throwing some light on the aspect of black hole stability. Later we have also introspected the effects of the Gauss-Bonnet coupling parameter α, whose function (6αr), is added as a correction term to the black hole entropy. We have especially focused on what changes does it have upon the nature of the plots as to whether it enhances or reduces the effect of Q on the behavior of the curves. Finally this paper has also kept an eye at estimating the stability domains of the black holes described in these two gravity theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号