首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
锶元素是人体不可缺少的微量元素,饮用富锶矿泉水可以为人体补充锶。目前用于检测富锶矿泉水中锶元素的常规分析方法如原子吸收光谱法、原子荧光光谱法、离子色谱法、电感耦合等离子体-原子发射光谱法/质谱法等,具有检测灵敏度高、检测稳定性好的优点,但是相关仪器体积庞大,价格昂贵,能耗高,有些还需要使用惰性/特殊气体,不适合现场、实时和在线连续监测。因此,发展小型化、低成本、快速的光谱检测对锶元素的有效测量具有重要意义。溶液阴极辉光放电-原子发射光谱法是近年来发展迅速的水体金属离子测量方法,具有检出限低、成本低、小型化等优点。因此,建立溶液阴极辉光放电-原子发射光谱系统,实现了富锶矿泉水中锶元素的浓度测量。实验考察了溶液阴极辉光放电装置中放电电流、溶液流速和pH值等参数对锶的信背比的影响,确定了定量分析元素锶的最佳实验条件:溶液流速1.85 mL·min-1、溶液阴极辉光放电装置的放电电流75 mA,pH 1.0的HNO3作为电解质。选取波长为460.77 nm的光谱线作为锶元素的分析谱线。在上述最佳工作条件下对锶的溶液进行测定,锶元素的发射光谱稳定性为0.52% (n=21)。锶的质量浓度在0.1~20 mg·L-1范围内与其发射强度呈线性关系,线性相关系数为0.999 6。所建立的溶液阴极辉光放电-原子发射光谱法测得锶的检出限为29 μg·L-1。采用搭建的溶液阴极辉光放电-原子发射光谱检测系统测量了市场上常见的三种富锶矿泉水,测量结果与电感耦合等离子体发射光谱法一致。此外,该方法对富锶矿泉水的加标回收率为98.8%~107.6%。结果表明:溶液阴极辉光放电-原子发射光谱法是测定富锶矿泉水中锶的一种有效方法。  相似文献   

2.
溶液阴极辉光放电-原子发射光谱是一种新颖的快速、高效、实时在线的元素分析方法,它可用于水体金属元素的检测。为了实现对水体中Mn元素准确和稳定的测量,采用溶液阴极辉光放电-原子发射光谱法耦合三台不同入射狭缝和分辨率的便携光谱仪(Maya 2000 Pro)对溶液中的Mn离子进行了检测。实验研究了光谱仪的入射狭缝和分辨率对光谱检测的影响,发现光谱仪的入射狭缝越宽光谱强度越大,光谱仪的分辨率越高得到光谱强度与背景强度的比值越高。实验考察了溶液流速和放电电流对Mn发射光谱的影响,在溶液流速为1.86 mL·min-1和放电电流为65 mA时获得较高信背比。实验测试了在溶液流速为1.86 mL·min-1和放电电流为65 mA的优化实验条件下Mn的光谱检测稳定性,三台便携式光谱仪测量Mn在连续一段时间内光谱强度的相对标准偏差分别为0.59%,0.61%,0.80%,检测的稳定性较好。同时探讨了Mn元素的分析性能参数,获得了较低的背景标准偏差,检出限分别为42.8,65.1,33.8 μg·L-1。实验对标定物质中的Mn元素进行定量分析测量,测量误差在0.02%~2.08%之间,精密度为0.63%~1.54%,加标回收率为97%~99%,表明本方法具有较高的检测准确度和稳定性。研究结果显示,溶液阴极辉光放电-原子发射光谱法耦合便携式光谱仪可用于水体中痕量重金属元素Mn的精确检测。  相似文献   

3.
水环境中的金属残留严重威胁人类的健康安全,急需快速、高效的金属残留检测技术。文章报道了自行建立的大气压电解液阴极辉光放电发射光谱装置。利用待测液体作为放电阴极进行大气压辉光放电实现了水体中金属离子的痕量检测。对配制的标准样品进行了定量测量,基于背景发射光谱的3σ计算,获得了大气压电解液阴极辉光放电光谱装置对Na, Li, Cu, Pb和Mn等5种金属元素的检测限,分别为0.008, 0.005, 1.1, 2.06和1.95 mg·L-1。该装置在金属残留的实时在线检测领域具有应用前景。  相似文献   

4.
溶液阴极辉光放电-原子发射光谱法是近年来兴起的一种新型水体金属离子检测技术,它具有快速,在线和低成本检测的显著特点。以工业注射泵实现溶液阴极辉光放电激发源的流动注射进样,再以窄带滤光片分别提取Na,K,Ca,Li,Sr和Cs金属元素发射光谱信号,最后由光电倍增管和皮安表接收光谱信息光谱信号,实现了水质金属元素的检测。实验分析了注射容量分别为100和166 μL对1 mg·L-1的Na元素产生的信号强度的影响,研究发现其信号强度的相对标准偏差(RSD)分别为4.64%和1.95%,说明两种注射量稳定性都较好。为了获得更好的分析性能,实验分析了直流放电电压,狭缝的宽度以及光电倍增管供压等参数对信号强度的影响。实验结果表明,在直流放电电压为1 000 V,狭缝宽度为70 μm和光电倍增管供压为-800 V时获得了较高的信背比。采用此装置在流动注射模式下,测得了Na,K,Ca,Li,Sr和Cs六种金属元素检出限,分别为2.78,4.23,589,9.45,981和83.6 μg·L-1。实验最后对混合溶液标定物质中的Na和K元素进行了定量分析测量,测量的误差分别为7.5%和6.67%,精密度分别为1.24%和0.89%,研究结果表明基于滤光片提取光谱的流动注射分析-溶液阴极辉光放电-原子发射光谱方法具有较高的检测准确度。  相似文献   

5.
溶液阴极辉光放电-原子发射光谱是一种新颖的快速、高效、实时在线的元素分析方法,它可用于水体金属元素的检测。为提高其测量精确度和稳定性,将内标法应用于溶液阴极辉光放电-原子发射光谱技术。对K元素建立了标准定标曲线和以Hβ为内标元素的定标曲线,内标法测得样品的相对误差和相对标准偏差分别为1.11%,2.14%,精确度和稳定性较之标准曲线法有一定的提高。实验考察了元素谱线强度在同一时段的波动情况,发现元素K和Hβ的谱线强度变化趋势稍有不同,而同主族元素K和Rb,Ca和Mg的谱线强度有相同的变化趋势,提出选择与待测元素同主族且谱线强度变化趋势较为一致的元素作为内标元素能更大化校正实验波动的观点。同时探讨了K以Rb为内标元素、Ca以Mg为内标元素以及Mg以Ca为内标元素时的内标法测量的精确度和稳定性,得其相对误差分别为0.49%,0.02%和0.30%,相对标准偏差分别为1.11%,1.13%和0.87%,与标准曲线法和以Hβ为内标元素的内标法相比效果更佳。测得自来水样品中Ca元素以Mg为内标的相对误差和相对标准偏差为0.58%,1.03%,Mg元素以Ca为内标的相对误差和相对标准偏差为1.57%和1.10%。研究结果表明,将溶液阴极辉光放电-原子发射光谱技术应用于水体金属元素检测时,内标法可以有效校正实验波动的影响,提高测量的精确度和稳定性。  相似文献   

6.
液体阴极辉光放电-原子发射光谱是近些年兴起的一种水体金属元素检测技术。该技术具有开放大气环境工作,进样简便,体积小,运行费用低,可同时检测多种金属元素等显著特征。根据之前的研究工作可知,金属元素的浓度不仅与自身的某一条谱线强度有关,而且还与自身其他的谱线或者基体中其他元素的谱线强度有关。为提高该技术的检测能力和精度,降低实验过程中基体效应的影响,以及更加充分地利用光谱信息,采用多元线性回归法对光谱信息进行定量分析。选取Pb Ⅰ 368. 35 nm和Pb Ⅰ 405.78 nm两条特征谱线,建立Pb元素浓度与这两条光谱线强度的二元线性回归方程;相比于标准曲线法,Pb元素的拟合度R2从0.986 5提高到0.998 7,两组Pb测试液的相对误差从34.00%和29.00%降低到14.20%和1.51%。为降低复杂成分中基体效应的影响,建立Na的浓度与Na Ⅰ 589.38 nm,Zn Ⅰ 213.8 nm,PbⅠ405.78 nm和Hβ四条特征谱线强度的四元线性回归方程;拟合度R2从标准曲线法的0.955 8提高到0.995 6,两组Na测试液的相对误差从11.67%和14.71%降低到2.33%和3.57%。以上结果表明:相比于标准曲线法,多元线性回归法可以降低实验过程中基体效应的影响,并且能更加充分地利用光谱信息,能提高拟合度R2,以及降低测量的误差,从而提高液体阴极辉光放电-原子发射光谱定量分析金属元素的精度。  相似文献   

7.
通过将氢化物发生装置与液体阴极辉光放电发射光谱仪相耦合,建立了一种定量检测海水中痕量硒、砷、汞的方法。实验对氢化物发生的载酸种类和浓度、还原剂浓度以及液体阴极辉光放电装置的放电电压、电解质种类和流速等工作条件进行了优化,确定了联用仪器定量分析硒、砷、汞的最佳工作条件:氢化物发生载酸为5%的HCl,还原剂为1.5%的NaBH_4,液体阴极辉光放电装置的放电电压为1060V,电解质溶液为pH 1的HCl,电解液流速为2.2 mL·min~(-1)。分别选取204.0, 228.8和253.7 nm作为硒、砷、汞的分析谱线,在上述最佳工作条件下对硒、砷、汞的系列混合标准溶液进行测定,硒、砷、汞的质量浓度在2~100μg·L~(-1)范围内与其发射强度呈线性关系,线性相关系数分别为0.999 2, 0.999 4和0.998 5,其检出限分别达到0.54, 0.92和1.91μg·L~(-1),浓度为0.1 mg·L~(-1)的硒、砷、汞的信号值相对标准偏差均小于3%。与单一的液体阴极辉光放电发射光谱相比,硒、砷、汞的检出限分别降低了3个、 4个、 2个数量级。选取国家土壤标准物质GBW07405对联用仪器检测结果的准确度进行了验证,其检测值与参考值一致;将该方法应用于中国黄海沿岸实际海水样品中痕量硒、砷、汞的定量分析,分析结果与电感耦合等离子体质谱法一致,用标准加入法测得其加标回收率在94.9%~105.3%之间。氢化物发生-液体阴极辉光放电发射光谱能够实现快速、准确地对海水中痕量硒、砷、汞的高灵敏在线定量检测。  相似文献   

8.
针对已有的液体阴极辉光放电发射光谱装置,对放电的阴极加了一个锯齿型引流结构设计,锯齿顶端位于毛细管顶部下方2mm处,在液滴刚开始长大时便触到锯齿尖端,进而破坏液滴的表面张力,使液体顺着引流槽流下,从而大大改善了因阴极毛细管顶端液滴的周期性形成和坍塌造成的放电闪烁、电流改变,甚至放电熄灭,此种设计可持续放电至少3小时。利用新的结构还测定了铅、铬、镉、锌、钒、镍、铜、银、钴九种元素的线性方程,九种元素的线性度均在0.97以上,线性较好。仪器对银、铅、铜的灵敏度最好,三种元素的检测限分别为0.048,0.080和0.084mg.L-1,对镍、铬、钴、锌、镉的检测限在0.27~1.60mg.L-1之间,对钒的检测限最高为10.88mg.L-1。  相似文献   

9.
研究了液相隔膜辉光放电发射光谱法对水中钾离子和钠离子的检测性能,考察了外加电压和有机添加剂甲醇对检测灵敏度和检出限的影响。结果表明提高外加电压和添加甲醇能提高检测灵敏度和降低检出限。在电压850 V,添加0.6%~0.8%甲醇时钾和钠的检出限分别为0.007和0.001 mg·L-1。液相隔膜辉光放电发射光谱法检测水中金属离子具有背景光谱干扰小和灵敏度高的特点。  相似文献   

10.
溶液阴极辉光放电技术作为一种新型的光谱检测技术,被广泛应用于环境污染物的分析和检测等方面.虽然该技术具有结构简单以及成本低等优势,但是在重金属检测方面,其灵敏度还有待提高.针对上述问题,搭建了氢化物发生-溶液阴极辉光放电光谱测量系统,实现了对水体中痕量汞(Hg)和锡(Sn)的简单高效检测.为了得到更优的检测效果,实验选...  相似文献   

11.
针对农业生产中阿维菌素过度使用造成的农作物农药残留超标问题,利用JASCO FP8300荧光分光光度计对阿维菌素农药溶液进行荧光光谱检测,分析阿维菌素原药溶液及制剂溶液的荧光光谱特征,为实现阿维菌素的快速检测提供数据参考。实验首先通过分析原药溶液和两种来自不同生产厂家的制剂溶液的三维荧光光谱,对比荧光特征峰的位置异同,判断阿维菌素荧光特征峰的区域为Ex=250~290 nm, Em=280~320 nm,最佳激发波长为270 nm。接着,选定Ex=270 nm作为最佳激发波长对原药溶液及制剂溶液进行二维荧光光谱检测,得到相应的二维荧光光谱数据。根据光谱数据,分析阿维菌素荧光特征峰处荧光强度值随着溶液浓度变化的规律,将相关数据拟合,得出关于阿维菌素荧光特征峰值与对应溶液浓度值的预测模型。由数据分析结果得知,阿维菌素原药溶液在10~35 mg·L-1浓度范围内预测模型的R2为0.999,预测结果的均方根误差RMSE为0.359 mg·L-1;两种不同厂家生产的阿维菌素制剂溶液在10~35 mg·L-1浓...  相似文献   

12.
三种酚类化合物的三维荧光光谱特性研究   总被引:1,自引:0,他引:1  
三维荧光光谱技术通过在不同激发波长下扫描发射光谱获得荧光强度变化信息,由于其灵敏度高,选择性好,被广泛用于环境中污染物的监测。利用该方法研究3种酚类化合物的荧光光谱特性,在激发波长为240~360 nm,发射波长为260~500 nm范围内,确定了苯酚、间甲酚和麝香草酚的荧光峰位置分别为272/300,274/300和276/304 nm。由于3种酚类物质为同系物,结构相似,因此得到的激发光谱和发射光谱在形状上极为相似。工作液浓度在0.02~1.0 mg·L-1范围内,3种酚类物质的浓度与荧光强度之间均呈现较好的线性关系,且检出限达到1 μg·L-1。实验结果表明,用三维荧光光谱法可对3种酚类化合物进行定性和定量分析。  相似文献   

13.
大气压氩直流微放电光谱研究   总被引:1,自引:1,他引:0  
微空心阴极放电或微放电是一种能够实现高气压下放电的有效方法。利用不锈钢空心针作阴极,不锈钢网作阳极,进行了大气压氩直流微放电实验研究。测量了大气压氩微放电光谱,发现氩气的发 射谱线主要集中在690~860 nm范围,且全部为氩原子4p—4s的跃迁。实验研究了不同放电电流、气体压强、气体流量与谱线强度之间的关系,发现谱线强度随放电电流、气体流量增加均增加,而谱线强 度随压强变化呈现不同特征:谱线强度随压强的增加先增加后降低,在13.3 kPa时强度最大。此外,选用跃迁波长为763.51和772.42 nm的两条光谱线,利用发射谱线强度比值法测量了氩气微放电等离子 体的电子激发温度。结果显示,其电子激发温度处于2 000~2 800 K之间,且随放电电流的增加而增加,随气体压强和气体流量的增加而降低。  相似文献   

14.
《应用光谱学评论》2013,48(3):247-273
ABSTRACT

Electrolysis glow discharge (ELCAD), wherein an electrolyte serves as the cathode, is a potential new analytical source for on-line determination of trace heavy metals in waste and drinking waters, in addition to other liquid samples. The use of atomic emission spectrometry (AES) with ELCAD enhances the efficiency of the technique. Although possible applications of ELCAD-AES are widespread, the technique is currently unsuitable for the detection of toxic elements, such as mercury, at concentrations as low as the World Health Organization guideline level in drinking water (1 ng/mL). The aim of this contribution is to provide an overview of the brief history, development of instrumentation, fundamental mechanistic studies and applications of ELCAD. This review suggests that, whereas the scope of ELCAD-AES is diverse, it would benefit greatly from the involvement of more researchers to enhance the capabilities of the system, as otherwise this goal will not be achieved.  相似文献   

15.
由于重金属毒性大,且在环境、动物和人体器官中易积聚,因而在矿石开采、冶炼和加工之前,监测其中的微量重金属显得尤为重要。著名的原子光谱仪器,如原子荧光光谱(AFS)、原子吸收光谱(AAS)、电感耦合等离子体(ICP)等已广泛用于各种样品中元素的检测,但它们体积大、能耗高、价格昂贵、气体消耗大,这些缺点严重阻碍了野外现场的连续监测。为了满足分析仪器的微型化趋势,1993年Cserfalvi开发了一种电解液阴极放电原子发射光谱(ELCAD-AES)技术并将其用于分析检测中。该装置中,待测溶液以8~10 mL·min-1的流速从细管顶端溢出,然后沿管壁流入装满电解液的35 mL储液池中,以溢出溶液的液面作为放电阴极,在和流动液体电极相距2~4 mm处放一金属W(Ti)棒为阳极,细管浸入电解液并尖端向上弯曲超出储液池液面1~3 mm,细管顶端溢出的液体流入储液池并通过其中的碳棒与电源负极相连,从而构建放电系统。从那时起,为了提高激发效率和放电稳定性,人们对ELCAD进行了大量改进。基于ELCAD的特点,通过改进放电装置,建立了一种新的液相阴极辉光放电(LCGD)分析系统。该系统中,放电在直径0.5 mm的铂针阳极和内径1 mm的毛细管顶端溢出的溶液阴极之间的间隙中产生。毛细管上端和铂丝之间的间隙为2 mm,毛细管插入石墨管且露出石墨管的距离为2.5 mm。样品溶液以4.5 mL·min-1从毛细管顶端溢出流经石墨管上的凹槽,石墨管和电源负极连接。与ELCAD相比,LCGD的优点在于:Pt针做阳极,可形成尖端放电,从而降低能耗(<60 W),提高激发效率;蠕动泵管上打结,可降低泵的脉动性,提高放电的稳定性;石墨管链接电源负极,删除ELCAD中的储液池,使样品消耗更少。为了评估方法的分析性能,用LCGD测定了HNO3-HCl消化的精铜矿样品中的铅和锌。系统研究了放电稳定性以及放电电压、溶液流速、支持电解质和溶液pH对发射强度的影响,并将LCGD与其他ELCAD的分析性能进行比较。此外,用ICP对LCGD的测试结果进行验证,t检验分析两种结果的差异性。结果表明,当电压从620升高到680 V,发射强度逐渐增大,这是因为电压升高,激发能量增大,单位体积内激发的金属原子增多,激发效率提高。考虑到放电稳定性,选择650 V为最佳放电电压。当流速从2.5增加到4.5 mL·min-1时,发射强度增加,这是由于流速增加导致进入放电区的样品量增加,发射强度增强;流速高于4.5 mL·min-1后,发射强度有下降的趋势,这是由于水荷载的增加引起放电区能量密度降低以及过量水加热消耗了用于激发样品的能量,导致激发能量降低。因此,选择最佳流速为4.5 mL·min-1。pH=1的HNO3具有较高的激发强度,因而选择pH=1为最佳pH。最佳条件下,Pb和Zn的检出限分别为0.38和0.59 mg·L-1,相对标准偏差分别为0.9%和1.2%,功率低于60 W。实验中的检出限与其他类似方法所测结果有一定差距,这可能与所选谱仪有关。固定激发波长下研究发现,放电过程有较好的稳定性。矿石样品中Pb和Zn的回收率在87.6%~107.4%,LCGD测试结果与ICP基本一致,两种方法基本无显著性差异。与ICP相比,LCGD具有低能耗、高激发效率、小型便携等优点。随着进一步改进,有望开发出可用于实时、在线检测金属元素的微型化仪器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号