首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new surfactant-mediated approach was developed to synthesize hydroxyapatite (HAp) nanoparticles with high surface areas by calcination of their precursors encapsulated with calcium stearate using mixed surfactant-containing reaction mixtures. Acidic aqueous solution of calcium phosphate was mixed with both or either nonaoxyethylene dodecyl ether (C12EO9) and polyoxyethylene(20) sorbitan monostearate (Tween 60) and then was treated with aqueous ammonium at 25 degrees C. The C12EO9-based single surfactant system yielded an aggregate of platy HAp nanoparticles 20-40 nm in size, whereas the Tween 60-based single and mixed systems led to lath-shaped HAp nanoparticles 2-8 nm wide and encapsulated with calcium stearate. On calcination at 500 degrees C, the stearate-encapsulated HAp nanoparticles in the latter two systems were deorganized into high surface area HAp nanoparticles. Particularly, the HAp nanoparticles in the mixed system exhibited a specific surface area as high as 364 m2 g(-1) that is roughly 3 times larger than 160 m2 g(-1) for those in the single system. The significantly high surface area for the former is attributed to much less adhesion of decapsulated HAp nanoparticles, which originated from the particle-separating effect of the C12EO9 molecules adsorbed on the outer surface of the stearate-encapsulated HAp nanoparticles to inhibit their agglomeration or interfacial coordination. The present results demonstrate that the mixed use of two different surfactants as a source of encapsulating and templating agent and a particle-separating agent is specifically effective for the synthesis of high surface area HAp nanoparticles.  相似文献   

2.
Nanocrystalline hydroxyapatite (HAp) powders were successfully synthesized by a simple method using chitosan–polymer complex solution. To obtain HAp nanopowders, the prepared precursor was calcined in air at 400–800 °C for 2 h. The phase composition of the calcined samples was studied by X-ray diffraction (XRD) technique. The XRD results confirmed the formation of HAp phase with a small trace of monotite phase. With increasing calcination temperature, the crystallinity of the HAp increased, showing the hexagonal structure of HAp with the lattice parameter a in a range of 0.94030–0.94308 nm and c of 0.68817–0.68948 nm. The particle sizes of the powder were found to be 55.02–73.36 nm as evaluated by the XRD line broadening method. The chemical composition of the calcined powders was characterized by FTIR spectroscopy. The peaks of the phosphate carbonate and hydroxyl vibration modes were observed in the FTIR spectra for all the calcined powders. TEM investigation revealed that the prepared HAP samples consisted of rod-like nanoparticles having the particle size in the range of 100–300 nm. The corresponding selected-area electron diffraction (SAED) analysis further confirmed the formation of hexagonal structure of HAp.  相似文献   

3.
Preparation of colloidal hydroxyapatite (HAp) particles under body fluid conditions was investigated with focusing on the effect of preparative conditions on crystallinity of the resulting particles. Tris(hydroxymethyl)aminomethane was added to 1.5SBF (a solution having 1.5 times higher ion concentrations than those of a simulated body fluid, SBF) to increase the solution pH, which resulted in induction of homogeneous nucleation of HAp in the solution. Colloidal HAp particles having diameters about 300 nm were obtained. When the reaction was proceeded at 70°C and the sample was dried by heating, it was effective to obtain HAp particles having high crystallinity. Experimental results support that remaining water in the sample contributed to increase HAp crystallinity.  相似文献   

4.
Initial cell evaluation on alginate/hydroxyapatite block was investigated. Sodium alginate with 1, 3 and 5% concentration was obtained via neutral extraction of locally obtained brown seaweed, Sargassumpolycystum. Commercially available hydroxyapatite (HAp) powder was pressed uniaxially at 3 MPa to obtain the HAp block. The HAp block was then sintered at 900̊C. The sintered HAp block was then immersed in the sodium alginate solution at different concentration for 24 hours under vacuum condition. Morphological observations show that normal cell growth was observed on alginate/HAp blockafter post treatment for day 1 and 2. However, the cell starts to show some distinct morphological changes when compared to the control cells for day 5 and 7. Cell viability assay results shows that a consistent cell growth was obtained with HAp block incorporated with 3 and 5% sodium alginate. While HAp block without the incorporation of sodium alginate and HAp block incorporated with 1% sodium alginate concentration shows inconsistent cell growth. Initial cell evaluation results suggest that alginate/HAp block shows no toxicity on cell attachment and proliferation.  相似文献   

5.
The tribological properties of alumina ceramic are excellent due in part to a high wettability because of the hydrophilic surface and fluid film lubrication that minimizes the adhesive wear. Such surfaces are further modified with bioactive glass/ceramic coating to promote direct bone apposition in orthopedic applications. The present communication reports the biomimetic coating of calcium hydroxyapatite (HAp) on dense (2-3% porosity) alumina (alpha-Al(2)O(3)) substrate (1cmx1cmx0.5cm), at 37 degrees C. After a total period of 6 days immersion in simulated body fluid (SBF), at 37 degrees C, linear self-assembled porous (pore size: approximately 0.2mum) structures (length: approximately 375.39mum and width: 5-6mum) of HAp were obtained. The phenomenon has been demonstrated by self-assembly and diffusion-limited aggregation (DLA) principles. Structural and compositional characterization of the coating was carried out using SEM with EDX facility, XRD and FT-IR data.  相似文献   

6.
Nanometer-sized indium oxide (In(2)O(3)) particles have been prepared by chemical reaction of inorganic indium compounds and ammonia gas in a reverse microemulsion system consisting of water, Triton X-100 (surfactant), n-heptanol (co-surfactant), and n-octane (oil). Precursor hydroxides precipitated in the droplets of water-in-oil (W/O) microemulsion were calcined at different temperatures to form indium oxide powder. The factors affecting the particle size have been discussed; the calcination temperature is considered to be the important factor for controlling the size. In(2)O(3) calcined at 400 degrees C had a spherical form and a narrow size distribution. Calcination at 800 degrees C led to the formation of particles not only of irregular shape, but also of a wide size distribution. With the increase in calcination temperature from 400 to 800 degrees C, the average size of the particles grew from 7 to about 40 nm. The species of reactants used in the aqueous phase had a significant effect on the size of the particles. The average diameter of In(2)O(3) particles derived from reactant InCl(3) was 7 nm; that of particles derived from In(NO(3))(3) was 15 nm. The In(2)O(3) nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. The phase behavior of the microemulsions is discussed.  相似文献   

7.
Hydroxyapatite powders, which consisted of lath-like single-crystalline particles, were calcined at two different temperatures. Green and calcined powders were used for sintering HAp ceramic samples under uniaxial pressing. Powders and sintered samples were studied using various analytical techniques in order to determine how calcination affects the particle properties and the sintering behavior of HAp powders. It was found that calcination decreases the particles length and changes the particles morphology from lath-like to spherical shape. The relative density increases with increasing calcination temperature and aging time. It was found that long aging time favor the formation of thermally stable HAp particles, whereas a shorter one results in the formation of β-calcium phosphate during thermal treatment. Sintering of compacted powders begins at temperatures greater than 900°C, with a trend to increase the onset temperature as the calcination temperature is increased.  相似文献   

8.
Preparation and microstructural studies on hydrothermally prepared hematite   总被引:1,自引:0,他引:1  
A 0.1 M FeCl3 aqueous solution was hydrothermally treated in a 1.5-dm3 stainless steel autoclave at varied temperatures (Th: 110-200 degrees C). Highly ordered cubic particles with uniform micropores 0.8 nm in diameter are produced at Th = 115 degrees C, although the cubic particles become less uniform with wide pore size distribution by raising the Th.  相似文献   

9.
A novel strategy for the effective enrichment of phosphopeptides based on magnetic hydro‐xyapatite (HAp) clusters was developed in the current study. The structure of HAp ensures its probable separation capability, including cation exchange with P‐sites (negatively charged pairs of crystal phosphates), calcium coordination, anion exchange with C‐sites (positively charged pairs of crystal calcium ions). The prepared magnetic HAp clusters showed good performance on the efficient enrichment of phosphopeptides from the digestion mixture of β‐casein and BSA. Compared to commercial HAp particles, the magnetic HAp clusters exhibited better selectivity toward phosphopeptides. In addition, the use of magnetic material greatly simplified the enrichment procedure, which avoided the tedious centrifugation steps in a typical phosphopeptides enrichment protocol. Finally, the material was successfully applied in the enrichment of phosphopeptides from human serum. Taken together, the efficient enrichment of the phosphopeptides by the easily prepared magnetic HAp clusters demonstrated a rapid and convenient strategy for the purification of phosphopeptides from complex samples, which may facilitate protein phosphorylation studies.  相似文献   

10.
Highly dispersed gold particles (<2 nm) were synthesized within the pores of mesoporous silica with pore sizes ranging from 2.2 to 6.5 nm and different pore structures (2D-hexagonal, 3D-hexagonal, and cubic). The catalysts were reduced in flowing H2 at 200 degrees C and then used for CO oxidation at temperatures ranging from 25 to 400 degrees C. The objective of this study was to investigate the role of pore size and structure in controlling the thermal sintering of Au nanoparticles. Our study shows that sintering of Au particles is dependent on pore size, pore wall thickness (strength of pores), and pore connectivity. A combination of high-resolution TEM/STEM and SEM was used to measure the particle size distribution and to determine whether the Au particles were located within the pores or had migrated to the external silica surface.  相似文献   

11.
This study reports the adsorption efficacy of hydroxyapatite (HAp) for removing Congo Red (CR) dye from aqueous solution. HAp was synthesized utilizing chicken eggshell as a precursor of Ca source. Solid state synthesis method was implemented which comprised calcination at 950 °C (E-HAp950). XRD analysis confirmed the formation of bi-phasic HAp with 15.5% of β-TCP. Elemental composition was evaluated by XPS and EDX analysis. FESEM analysis revealed the particles are of plate and spherical shaped also confirmed by the TEM images. DLS particle size, zeta potential, BET surface area and point of zero charge were also evaluated. Adsorption efficacy of E-HAp950 for removing CR was evaluated by batch adsorption experiment. Maximum adsorption capacity (qmax) was found to be 9.64 mgg−1 which was best explained by the non-linear fitting (R2 = 0.98) of Langmuir isotherm. Adsorption kinetics profusely followed pseudo second order kinetic model (R2 = 0.999) with qe (experimental) being very much closer to qe (calculative) for this model. Thus, hydroxyapatite prepared by utilizing eggshell waste through solid state method has the potential to remove toxic dyes.  相似文献   

12.
Hydroxyapatite (HAp) nanoparticles with spherical, rod-shaped or fiber-shaped morphologies were synthesized by wet chemical method in aqueous media. Scanning electron microscopy, dynamic light scattering, helium pycnometry, and aqueous electrophoresis techniques were used to characterize the nanoparticles in terms of their particle size and morphology, density and zeta potential, respectively. Stable "Pickering-type" emulsions were prepared using the HAp nanoparticles as a particulate emulsifier and methyl myristate as an oil phase above pH 7.7, but not below pH 6.1. These emulsions were characterized in terms of their emulsion type, mean droplet diameter and morphology using electrical conductivity, light diffraction and optical microscopy. Rapid demulsification could be induced by lowering the solution pH: addition of acid led to dissolution of the HAp nanoparticles attached on oil-water interface and the emulsion was destabilized. HAp nanoparticles precipitated by addition of base to the aqueous phase after demulsification and the HAp particles precipitated worked as an effective particulate emulsifier. This emulsification-demulsification cycle was reversible. Sintering of methyl myristate-in-water emulsion stabilized with the HAp nanoparticles led to a porous HAp material.  相似文献   

13.
In this work, small-angle neutron scattering (SANS) is used to probe the structural transformations that accompany temperature-induced gelation of emulsions stabilized by a temperature-responsive polymer. The latter is poly(NIPAM-co-PEGMa) (N-isopropylacrylamide and poly(ethyleneglycol) methacrylate) and contains 86 mol% NIPAM. Turbidity measurements revealed that poly(NIPAM-co-PEGMa) has a lower critical solution temperature (T(LCST)) of 36.5 degrees C in D(2)O. Aqueous polymer solutions were used to prepare perfluorodecalin-in-water emulsions (average droplet size of 6.9 mum). These emulsions formed gels at 50 degrees C. SANS measurements were performed on the poly(NIPAM-co-PEGMa) solutions and emulsions as a function of temperature. The emulsion was also prepared using a D2O/H2O mixture containing 72 vol% D2O in order to make scattering from the droplets negligible (on-contrast). The SANS data were analyzed using a combination of Porod and Ornstein-Zernike form factors. The results showed that the correlation length (xi) of the polymer scaled as xi approximately phi(p)(-0.68) at 32 degrees C, where phi(p) is the polymer volume fraction. The xi value increased for all systems as the temperature increased, which was attributed to a spinodal transition. At temperatures greater than T(LCST), the polymer solution changed to a polymer dispersion of poly(NIPAM-co-PEGMa) aggregates. The aggregates have features that are similar to microgel particles. The average size of these particles was estimated as 160-170 nm. The particles are "sticky" and are gel-forming. The on-contrast experiments performed using the emulsion indicated that the interfacial polymer chains condensed to give a relatively thick polymer layer at the perfluorodecalin-water interface at 50 degrees C. The gelled emulsions appear to consist of perfluorodecalin droplets with an encapsulating layer of collapsed polymer to which sticky microgel particles are adsorbed. The latter act as a "glue" between coated droplets in the emulsion gel.  相似文献   

14.
The earliest stages of thermal oxidation of 6 nm diameter silicon nanoparticles by molecular oxygen are examined using a tandem differential mobility analysis (TDMA) apparatus, Fourier-transform infrared (FTIR) spectroscopy, time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). Particles are synthesized in and then extracted from a nonthermal RF plasma operating at approximately 20 Torr into the atmospheric pressure TDMA apparatus. The TDMA apparatus was used to measure oxidation-induced size changes over a broad range of temperature settings and N2-O2 carrier gas composition. Surface chemistry changes are evaluated in situ with an FTIR spectrometer and a hybrid flow-through cell, and ex situ with ToF-SIMS and XPS. Particle size measurements show that, at temperatures less than approximately 500 degrees C, particles shrink regardless of the carrier gas oxygen concentration, while FTIR and ToF-SIMS spectra demonstrate a loss of hydrogen from the particles and minimal oxide formation. At higher temperatures, FTIR and XPS spectra indicate that an oxide forms which tends toward, but does not fully reach, stoichiometric SiO2 with increasing temperature. Between 500 and 800 degrees C, size measurements show a small increase in particle diameter with increasing carrier gas oxygen content and temperature. Above 800 degrees C, particle growth rapidly reaches a plateau while FTIR and XPS spectra change little. ToF-SIMS signals associated with O-Si species also show an increase in intensity at 800 degrees C.  相似文献   

15.
《印度化学会志》2023,100(4):100947
Hydroxyapatite nanoparticle plays a significant role in the field of biomedical industries such as tissue engineering and regenerative medicine, carriers for drug delivery, photocatalyst, biosensors, and membranes for heavy metal removal from polluted water. The present work aims to synthesize the hydroxyapatite from bio-waste materials like cuttlefish bone using a precipitation method by changing reaction temperatures (room temperature, 60 °C, 70 °C, and 80 °C), and pH (9,10,11, and 12). The structure, particle size, and crystallinity of the obtained HAp were evaluated by XRD analysis. The functional groups present in the HAp nanoparticles were analyzed and confirmed by FTIR spectroscopy. The surface morphology of the particles was analyzed by using FESEM and the particle sizes were ranging from 40 to 160 nm for different pH values. The elemental composition was determined by EDAX analysis. The antibacterial activity of the sample was tested against gram-positive and gram-negative bacteria. The zone of inhibition value against gram-negative bacteria was found to be 20 ± 0.32 mm and 16 ± 0.18 mm against gram-positive bacteria for the sample with a pH value of 10. The obtained results confirmed that the optimized temperature, time, and pH are suitable for the preparation of HAp with excellent desired properties, which is employed as a better candidate for biomedical applications.  相似文献   

16.
As an application of the gel-sol method especially developed for the synthesis of general monodisperse particles in large quantities, uniform hematite (alpha-Fe2O3), magnetite (Fe3O4), and maghemite (gamma-Fe2O3) particles, precisely controlled in size, aspect ratio, and internal structure, have been prepared. For the synthesis of uniform ellipsoidal single-crystal particles of alpha-Fe2O3, a highly condensed suspension of fine beta-FeOOH particles doped with a prescribed amount of PO4(3-) ion in their interiors was aged at 140 degrees C for 24 h with seed particles of alpha-Fe2O3 in an acidic medium containing optimum concentrations of HCl and NaNO3. Systematic control of the aspect ratio and mean size was achieved by regulating the concentration of PO4(3-) ion incorporated into the beta-FeOOH particles and the number of seeds added. The resulting hematite particles were converted into magnetite by reduction in a H2 stream at 330 degrees C for 6 h; the magnetite was then oxidized to maghemite in an air stream at 240 degrees C for 2 h. Magnetite and maghemite thus prepared retained the original shape of the hematite. On the other hand, polycrystalline hematite particles of different sizes and aspect ratios were also prepared by aging a condensed Fe(OH)3 gel in the presence of different concentrations of SO4(2-) ion and seeds. The polycrystalline hematite particles were similarly converted into magnetite and then maghemite. The magnetic properties of these magnetite and maghemite particles were analyzed as a function of their mean particle volume, aspect ratio, and internal structure.  相似文献   

17.
Colloid-polymer (CP) mixtures extend between two limiting cases, the colloid limit with the polymer coil size small compared to the colloid radius Rcol and the protein limit with the colloidal particles much smaller in size than the radius of gyration of the polymer chains Rg. In the present work, model systems are developed for the protein limit. The colloid-solvent pairs are optimized in terms of their isorefractivity in order to facilitate the characterization of large polystyrene chains in suspensions of small colloids. The degree of isorefractivity of colloidal particles was successfully evaluated in terms of a reduced scattering intensity. Two polystyrene samples with radii of gyration of Rg = 96 nm and Rg = 78 nm, respectively, are used. The radii of the colloidal particles are close to Rcol = 12 nm, leading to size ratios of Rg/Rcol = 8 and Rg/Rcol = 6.5. Four colloid solvent systems were found to be suitable for polymer characterization by light scattering, one based on silica particles and three systems with acrylate particles. The present investigation is focused on the three acrylate systems: poly(methyl methacrylate) in ethyl benzoate (ETB) at 7 degrees C, poly(ethyl methacrylate) in toluene at 7 degrees C and poly(ethyl methacrylate) in ETB at 40 degrees C. Characterization of PS chains is for the first time performed in colloid concentrations up to 2.5% by weight. In all cases, the size and shape of the polymer chains remain unchanged. A slight mismatch of the colloid scattering or a limited colloid solubility prevented investigation of PS chains at higher colloid concentration.  相似文献   

18.
Ferric phosphate particles were prepared by aging a solution dissolving Fe(ClO4)(3) and H3PO(4) at 40-80 degrees C for 16 h in a Teflon-lined screw-capped Pyrex test tube. The spherical or agglomerated fine particles were only precipitated with an extremely fast rate of reaction. The spherical particles were only produced at a very narrow region in fairly low pH solutions. TEM observation revealed that these particles grew in spherical structure by aggregation of primary small particles. The size of spherical particles was decreased by increase in the solute concentration or raising the aging temperature. Therefore, the formation of spherical particles was explained by a polynuclear layer mechanism proposed by Nielsen. The uniform spherical particles produced are amorphous, but they were crystallized to FePO(4) after calcining above 600 degrees C. It was suggested that the voids between the primary particles within the secondary agglomerated particles constitute mesopores. The Fe/P molar ratio determined and weight loss in TG curves gave the chemical formulas of the particles as Fe(PO4)x(H2PO4)y.nH2O (x: 0.93-1.00, y: 0-0.22, n: 2.4-2.7). The amorphous spherical ferric phosphate particles showed a high selective adsorption of H2O by penetration of H2O molecules into ultramicropores, produced after outgassing pretreatment, of that size is smaller than N2 molecule. The more particles grew, the more adsorption selectivity of H(2)O became remarkable.  相似文献   

19.
Nanometer-sized TiO(2) island structure on the platy hydroxyapatite nanocrystals (HAp) has been accomplished by two-step emulsion process. At the first step, platy HAp nanocrystals, of which size was in the range of 70-200 nm after heat-treatment at 1078 K for 1 h, were prepared using the W/O emulsion system. Before the second step, HAp nanocrystals were immersed in NaH(2)PO(4) solution for the formation of hydroxyl group on their surface. In the following, titanium tetraisopropoxide reacted with the hydroxyl group of HAp surface to form TiO(2) nanoparticles on the surface of HAp nanocrystals, which were dispersed in the micrometer-sized methanol droplets of polyethylene cetylether-cyclohexane mixture (methanol/oil emulsion). The resulting hydroxyapatite nanocrystals loaded with TiO(2) nanoparticles showed the high photocatalytic activity comparing to the commercial TiO(2) catalyst.  相似文献   

20.
In the present paper, we describe the preparation of hybrid particles consisting of polymeric core with deposited hydroxyapatite (HAp) nanocrystals. Polystyrene submicron particles modified by β-diketone groups have been used as templates for the growth of HAp. Hybrid particles with HAp nanocrystal content between 7 and 50 wt% have been prepared. Microscopy studies indicate that hybrid particles exhibit “raspberry” morphology, and HAp nanoparticles are not homogeneously distributed on the polymer particle surface. The increase in the HAp content on the polymer particle surface reduces the colloidal stability of the hybrid particles because of the vanishing of the surface charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号