首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relativity principle that the law of propagation for light has the same form for all macroscopic observers is extended to include quantum observers; i.e., observers who may be large, but not infinitely large, by comparison with quantum mechanical systems. This leads to the extension of the covariance group from the diffeomorphisms to the conservation group (which is the largest group of coordinate transformations under which conservation laws are covariant statements) and, thus, to the quantum geometry and quantum unified field theory considered in a previous paper.  相似文献   

2.
This paper addresses the significance of the general class of diffeomorphisms in the theory of general relativity as opposed to the Poincaré group in a special relativistic theory. Using Anderson's concept of an absolute object for a theory, with suitable revisions, it is shown that the general group of local diffeomorphisms is associated with the theory of general relativity as its local dynamical symmetry group, while the Poincaré group is associated with a special relativistic theory as both its global dynamical symmetry group and its geometrical symmetry group. It is argued that the two groups are of equal significance as symmetry groups of their associated theories.  相似文献   

3.
4.
A theoretical device, which incorporates the functions of clock, rod, nonrotating platform, and accelerometer, and whose operation depends on the properties of light rays and free particles, is defined. The device, which we call a metrosphere, is simple enough that it can be introduced at the starting point of relativity theory and versatile enough that it can serve as an aid in the development and conceptualization of the theory. Relative to an inertial frame, a moving metrosphere undergoes a Lorentz-Fitzgerald contraction and the associated clock exhibits a Lorentz-Larmor rate retardation. From this fact and the assumption that there exists one inertial frame, it is possible to generate the kinematical results of special relativity. A metrosphere provides an observer with a local frame of reference, hence it is well adapted to the needs of general relativity, allows the equivalence principle to be introduced in a straightforward manner, and permits a smooth transition from special relativity to general relativity.  相似文献   

5.
赵峥 《物理》2015,44(10):646-656
文章介绍了爱因斯坦建立相对论,特别是广义相对论的伟大贡献。爱因斯坦提出了光速不变原理、广义相对性原理、马赫原理和等效原理。他不仅首先指出万有引力本质上是时空弯曲的几何效应,而且首先给出了广义相对论的基本方程。文章还讨论了为什么爱因斯坦是狭义相对论和广义相对论的唯一创建者。  相似文献   

6.
It is shown that the mode of operation of the relativistic Doppler effect and hence also its general formula can be deduced directly from the assumption of a cosmological fundamental reference frame, whose existence is now strongly supported by astronomical observation. Such a frame implies the existence of (relativistic) anisotropy effects on bodies and observers moving relative to it. The Doppler effect consequence is an interesting example of the emergence of relativistic effects from a simple intelligible assumption about light propagation, and shows how this assumption can provide a richer and clearer interpretation of special relativity than does the conventional formal approach.  相似文献   

7.
The considerations of Part I are extended and the experimental data and hypotheses that led to the establishment of the general theory of relativity are analyzed. It is found that one of the fundamental assumptions is that light is propagated homogeneously; i.e., by using arbitrary systems of coordinates, propagation of light can be represented by a homogeneous quadratic form. This is shown to be an assumption that can be verified by experiment, at least in principle. As a result of adding a number of further assumptions to this, the usual formalism of the general theory of relativity can be established. In the above point of view, the general theory of relativity—like any other theory—cannot be built upad hoc, but is built on distinct physical hypotheses, each of which can be subjected to test by experiment.  相似文献   

8.
Following recent developments in the hypothesis of a discrete space-time lattice, some assumptions are postulated that seem necessary to work out this model in the theory of special relativity. In particular, the assumption of space-time coordinates with integer values requires the translation of relativistic mechanics and electrodynamics into the language of finite difference equations. A special study of the covariance of these equations under the inhomogeneous Lorentz group is carried out. Finally, a stronger assumption is postulated, by which the physical magnitudes derived from the space-time coordinates should take rational values.This work is supported in part through funds provided by the Atomic Energy Commission under Contract No. AT11-1-3069.I am thankful to Professor R. Jackiw for bringing to my attention Wilson's ideas.  相似文献   

9.
We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincaré—Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.  相似文献   

10.
Einstein suggested that a unified field theorybe constructed by replacing the diffeomorphisms (thecoordinate transformations of general relativity) withsome larger group. We have constructed a theory that unifies the gravitational and electroweakfields by replacing the diffeomorphisms with the largestgroup of coordinate transformations under whichconservation laws are covariant statements. Thisreplacement leads to a theory with field equations whichimply the validity of the Einstein equations of generalrelativity, with a stress-energy tensor that is justwhat one expects for the electroweak field andassociated currents. The electroweak field appears as aconsequence of the field equations (rather than as a"compensating field" introduced to secure gaugeinvariance). There is no need for symmetry breaking toaccommodate mass, because the U(1) × SU(2) gaugesymmetry is approximate from the outset. Thegravitational field is described by the space-timemetric, as in general relativity. The electroweak fieldis described by the "mixed symmetry" part of the Riccirotation coefficients. The gauge symmetry-breakingquantity is a vector formed by contracting theLevi-Civita symbol with the totally antisymmetric partof the Ricci rotation coefficients.  相似文献   

11.
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.  相似文献   

12.
Beltrami-de Sitter时空和de Sitter不变的狭义相对论   总被引:4,自引:0,他引:4       下载免费PDF全文
郭汉英  黄超光  田雨  徐湛  周彬 《物理学报》2005,54(6):2494-2504
分析了在相对论体系中狭义相对性原理和宇宙学原理之间的关系以及Beltrami-de Sitter -陆启铿疑难.指出可以把狭义相对性原理推广到非零常曲率时空,在具有Beltrami度规 的de Sitter/反de Sitter时空中建立狭义相对论的运动学和粒子动力学. 在这类狭义相对 论中,相对于Beltrami坐标同时性,Beltrami坐标系就是惯性坐标系,相应的观测者为惯 性观测者; 对于自由粒子和光讯号, 惯性定律成立;可以定义可观测量,它们不但守恒而且还 满足推广的爱因斯坦关系.除了Beltrami坐标时同时性之外,对于共动观测, 还可以取固 有时同时性;此时,Beltrami度规成为Robertson-Walker型的度规,其3维空间是闭的,对 于平坦的偏离为宇宙学常数的量级.这表明,在这类狭义相对论中,相对性原理与“完美”宇 宙学原理之间存在内在联系,并不存在那些问题.进而,基于最新观测事实,重述了Mach原 理;指出对于Beltrami-de Sitter/反de Sitter时空,宇宙学常数恰恰给出惯性运动的起 源. 关键词: 狭义相对性原理 宇宙学原理 de Sitter不变的狭义相对论 Beltrami-de Sitter时空 同时性 Mach原理  相似文献   

13.
A recent paper suggested that if Galilean covariance was extended to signals and interactions, the resulting theory would contain such anomalies as would have impelled physicists towards special relativity even without empirical prompts. I analyze this claim. Some so-called anomalies turn out to be errors. Others have classical analogs, which suggests that classical physicists would not have viewed them as anomalous. Still others, finally, remain intact in special relativity, so that they serve as no impetus towards this theory. I conclude that Galilean covariance is insufficient to derive special relativity.  相似文献   

14.
A theory has been presented previously in which the geometrical structure of a real four-dimensional space time manifold is expressed by a real orthonormal tetrad, and the group of diffeomorphisms is replaced by a larger group. The group enlargement was accomplished by including those transformations to anholonomic coordinates under which conservation laws are covariant statements. Field equations have been obtained from a variational principle which is invariant under the larger group. These field equations imply the validity of the Einstein equations of general relativity with a stress-energy tensor that is just what one expects for the electroweak field and associated currents. In this paper, as a first step toward quantization, a consistent Hamiltonian for the theory is obtained. Some concluding remarks are given concerning the need for further development of the theory. These remarks include discussion of a possible method for extending the theory to include the strong interaction.  相似文献   

15.
Diffeomorphism freedom induces a gauge dependence in the theory of spacetime perturbations. We derive a compact formula for gauge transformations of perturbations of arbitrary order. To this end, we develop the theory of Taylor expansions for one-parameter families (not necessarily groups) of diffeomorphisms. First, we introduce the notion of knight diffeomorphism, that generalises the usual concept of flow, and prove a Taylor's formula for the action of a knight on a general tensor field. Then, we show that any one-parameter family of diffeomorphisms can be approximated by a family of suitable knights. Since in perturbation theory the gauge freedom is given by a one-parameter family of diffeomorphisms, the expansion of knights is used to derive our transformation formula. The problem of gauge dependence is a purely kinematical one, therefore our treatment is valid not only in general relativity, but in any spacetime theory. Received: 21 November 1996 / Accepted: 20 August 1997  相似文献   

16.
Starting with a thorough and self-contained account of transformations between inertial observers, the most general frame transformation is derived, which fully incorporates the Michelson-Morley experiment and the transverse Doppler effect. Lorentz and Marinov transformations are presented as two particular cases. On a rigorous mathematical ground, the paper presents a theory, more general than special relativity and with three degrees of freedom, that completely agrees with a well-established phenomenology.  相似文献   

17.
The relation of the special and the general principle of relativity to the principle of covariance, the principle of equivalence and Mach's principle, is discussed. In particular, the connection between Lorentz covariance and the special principle of relativity is illustrated by giving Lorentz covariant formulations of laws that violate the special principle of relativity: Ohm's law and what we call Aristotle's first and second laws. An Aristotelian universe in which all motion is relative to absolute space is considered. The first law: a free particle is at rest. The second law: force is proportional to velocity. Ohm's law: the current density is proportional to the electrical field strength. Neither of these laws fulfills the principle of relativity. The examples illustrate, in the context of Lorentz covariance and special relativity, Kretschmann's critique of founding Einstein's general principle of relativity on the principle of general covariance. A modification of the principle of covariance is suggested, which may serve as a restricted criterium for a physical law to satisfy Einstein's general principle of relativity. Other objections that have been raised to the validity of Einstein's general principle of relativity are based upon the preferred state of inertial frames in the general, as well as in the special theory, the existence of tidal effects in true gravitational fields, doubts as to the validity of Mach's principle, whether electromagnetic phenomena obey the principle, and, finally, the anisotropy of the cosmic background radiation. These objections are reviewed and discussed.  相似文献   

18.
In general relativity, gravitational waves propagate at the speed of light, and so gravitons are massless. The masslessness can be traced to symmetry under diffeomorphisms. However, another elegant possibility exists: masslessness can instead arise from spontaneous violation of local Lorentz invariance. We construct the corresponding theory of gravity. It reproduces the Einstein-Hilbert action of general relativity at low energies and temperatures. Detectable signals occur for sensitive experiments, and potentially profound implications emerge for our theoretical understanding of gravity. Third Award in the 2005 Essay Competition of the Gravity Research Foundation, 2005. - Ed.  相似文献   

19.
Homogeneous isotropic models of the universe, based on the general theory of relativity, lead to the existence of a preferred frame of reference, which is similar to the absolute space of, Newton, and a preferred time coordinate, which resembles the absolute time of Newton. These concepts seem to be in contradiction to the principle of covariance on which the general relativity theory is based. A theory of gravitation is therefore proposed which uses the world picture of general relativity but is not covariant. In the three crucial tests, the proposed theory gives the same results as the general relativity theory. However, in contrast to general relativity, the present theory predicts the emission of gravitational waves by spherically symmetric systems, and gravitational waves are found, in general, to have both transverse and longitudinal components.  相似文献   

20.
The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a “master” observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the “circular twin paradox”, then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of “Selleri’s paradox”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号