首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol dehydrogenase (ADH) from solutions of homogenised packed bakers’ yeast has been successfully purified using immobilised metal-ion affinity chromatography in an expanded bed. Method scouting carried out using pure ADH solutions loaded onto 5-ml HiTrap columns charged with Zn2+, Ni2+ and Cu2+ and eluted using 0–50 mM EDTA gradient found that charging with Zn2+ gave the highest recovery and the lowest EDTA concentration required for elution. These results were used to develop a protocol for the expanded bed system and further tested using clarified yeast homogenate loaded onto XK16/20 packed beds (approximately 30 ml) packed with Chelating Sepharose FastFlow matrix in order to determine the optimum elution conditions using EDTA. The ADH was found to elute at 5 mM EDTA and the dynamic and total binding capacities of Streamline chelating for ADH were found to be 235 U/ml and 1075 U/ml matrix, respectively. Expanded bed work based on a step EDTA elution protocol demonstrated that ADH could be successfully eluted from unclarified homogenised bakers’ yeast diluted to 10 mg/ml total protein content with a recovery of 80–100% that was maintained over five consecutive runs with a vigorous clean-in-place procedure between each run.  相似文献   

2.
Non-covalently-bound subunit complexes of proteins have been measured by an ion trap mass spectrometer equipped with an orthogonal electrospray ionization source. For the analysis of the generated molecular ions with high mass/charge ratios, the mass/charge range of the ion trap was extended by increasing its radio frequency (rf) voltage to 15 kV (V(0-p)) and by resonant ion ejection. Ions of the non-covalent dimer of bovine serum albumin (BSA), as well as of subunit complexes of alcohol dehydrogenase (ADH) from bakers' yeast and from horse liver, have been detected at mass/charge values between 3000-9000 Th. The maximum observed molecular weight was that of a non-covalently-bound subunit-octamer of bakers' yeast ADH (two non-covalently-bound subunit-tetramers) at ca. 290 kDa.  相似文献   

3.
Summary Affinity partition of yeast and horse liver alcohol dehydrogenases (ADH) in two-phase systems containing polyethylene glycol (PEG)-dyes is most effective using Cu(II) complexes of Light resistant yellow 2KT and Red-violet 2KT. The effects of NaCl, NAD and chelating agents (imidazole and adenine) on the partitioning of ADH's were studied. It was shown that two-phase systems containing dyes in the top and bottom phases with different affinity to yeast ADH are promising for the extraction of enzyme from crude extract.  相似文献   

4.
Different soluble NAD+-dependent alcohol dehydrogenase (ADH) isozymes were detected in cell-free homogenates from aerobically grown mycelia of YR-1 strain of Mucor circinelloides isolated from petroleumcontaminated soil samples. Depending on the carbon source present in the growth media, multiple NAD+-dependent ADHs were detected when hexadecane or decane was used as the sole carbon source in the culture media. ADH activities from aerobically or anaerobically grown mycelium or yeast cells, respectively, were detected when growth medium with glucose added was the sole carbon source; the enzyme activity exhibited optimum pH for the oxidation of different alcohols (methanol, ethanol, and hexadecanol) similar to that of the corresponding aldehyde (≈7.0). Zymogram analysis conducted with partially purified fractions of extracts from aerobic mycelium or anaerobic yeast cells of the YR-1 strain grown in glucose as the sole carbon source indicated the presence of a single NAD+-dependent ADH enzyme in each case, and the activity level was higher in the yeast cells. ADH enzyme from mycelium grown in different carbon sources showed high activity using ethanol as substrate, although higher activity was displayed when the cells were grown in hexadecane as the sole carbon source. Zymogram analysis with these extracts showed that this particular strain of M. circinelloides has four different isozymes with ADH activity and, interestingly, one of them, ADH4, was identified also as phenanthrene-diol-dehydrogenase, an enzyme that possibly participates in the aromatic hydrocarbon biodegradation pathway.  相似文献   

5.
The enzymatic ways of coenzyme regeneration include the addition of a second enzyme to the system or the addition of the co-substrate. In the present study, both methods of enzymatic coenzyme (NAD+) regeneration were studied and compared in the reaction of hexanol oxidation catalyzed by alcohol dehydrogenase (ADH). As a source of ADH, commercial isolated enzyme and the whole baker??s yeast cells were used. First, coenzyme regeneration was employed in the reaction of acetaldehyde reduction catalyzed by the same enzyme that catalyzed the main reaction, and then NAD+ regeneration was applied in the reaction of pyruvate reduction catalyzed by l-lactate dehydrogenase (l-LDH). Hexanal was obtained as the product of hexanol oxidation catalyzed by isolated ADH while hexaonic acid was detected as a product of the same reaction catalyzed by baker??s yeast cells. All of the used biocatalysts were kinetically characterized. The mass reactions were described by the mathematical models. All models were validated in the batch reactor. One hundred percent hexanol conversion was obtained using permeabilized yeast cells using both methods of cofactor regeneration. By using isolated enzyme ADH, the higher conversion was achieved in a system with cofactor regeneration catalyzed by l-LDH.  相似文献   

6.
Capillary polystyrene-divinylbenzene (PS-DVB) monolithic columns were used to separate differentially acetylated intact IM9 protein isoforms. Compared to the unmodified form, the hydrophobic shift for intact acetylated isoforms was significant under standard reversed-phase conditions (32.5-45% acetonitrile in 10 min). The high chromatographic resolution of the PS-DVB monolithic columns resulted in peak widths at half height of 4-5s. This allowed us to nearly completely resolve a number of peaks greater than the number of possible acetylation sites. This observation suggested that not only the number, but also the location of the acetylations on the protein had a significant effect on the retention. Matrix-assisted laser desorption ionization time-of-flight MS and MS/MS were used to confirm the chromatographic separation of isoforms. It was found that the acetylations site, especially on the N-terminus, has an effect on the retention on the PS-DVB column.  相似文献   

7.
Chen P  Liu HH  Cui R  Zhang ZL  Pang DW  Xie ZX  Zheng HZ  Lu ZX  Tong H 《Talanta》2008,77(1):262-268
The effects of Li+ and polyethylene glycol (PEG) on the genetic transformation of Saccharomyces cerevisiae were investigated by using fluorescence microscopy (FM) to visualize the binding of plasmid DNA labeled with YOYO-1 to the surface of yeast cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) to image the change in surface topography of yeast cells, coupled with transformation frequency experiments. The results showed that under the same conditions, the transformation frequencies of yeast protoplasts were much higher than those of intact yeast cells. PEG was absolutely required for the binding of DNA to the surface of intact yeast cells or yeast protoplasts, and had no effect on the surface topography of intact yeast cells or yeast protoplasts. In the presence of PEG, Li+ could greatly enhance the binding of plasmid DNA to the surface of intact yeast cells, increase their transformation frequency, and affect their surface topography. On the other hand, no effect on the DNA binding to the surface of protoplasts and no increase in the number of transformants and no surface topography changes were found upon the treatment with Li+ to protoplasts. In the present work, the effects of Li+ and PEG on yeast genetic transformation were directly visualized, rather than those deduced from the results of transformation frequencies. These results indicate that cell wall might be a barrier for the uptake of plasmid DNA. Li+ could increase the permeability of yeast cell wall, then increase the exposed sites of DNA binding on intact yeast cells. The main role of PEG was to induce DNA binding to cell surface.  相似文献   

8.
We report the crystal structure of the Escherichia coli TolB-Pal complex, a protein-protein complex involved in maintaining the integrity of the outer membrane (OM) in all Gram-negative bacteria that is parasitized by colicins (protein antibiotics) to expedite their entry into cells. Nuclease colicins competitively recruit TolB using their natively disordered regions (NDRs) to disrupt its complex with Pal, which is thought to trigger translocation of the toxin across a locally destabilized OM. The structure shows induced-fit binding of peptidoglycan-associated lipoprotein (Pal) to the beta-propeller domain of TolB causing the N-terminus of one of its alpha-helices to unwind and several residues to undergo substantial changes in conformation. The resulting interactions with TolB are known to be essential for the stability of the complex and the bacterial OM. Structural comparisons with a TolB-colicin NDR complex reveal that colicins bind at the Pal site, mimicking rearranged Pal residues while simultaneously appearing to block induced-fit changes in TolB. The study therefore explains how colicins recruit TolB in the bacterial periplasm and highlights a novel binding mechanism for a natively disordered protein.  相似文献   

9.
N-Myristoyl transferase-mediated labelling using a substrate modified with an azide or alkyne tag is described as an efficient and site-selective method for the introduction of a bioorthogonal tag at the N-terminus of a recombinant protein. The procedure may be performed in vitro, or in a single over-expression/tagging step in vivo in bacteria; tagged proteins may then be captured using Staudinger-Bertozzi or 'click' chemistry protocols to introduce a secondary label for downstream analysis. The straightforward synthesis of the chemical and molecular biological tools described should enable their use in a wide range of N-terminal labelling applications.  相似文献   

10.
We report here the ability of an alcohol dehydrogenase (ADH) ribozyme to reduce a benzaldehyde. While the ribozyme was initially evolved in vitro based on the activity for the NAD+-dependent oxidation of the benzyl alcohol, we found that this ADH ribozyme is also capable of reducing the aldehyde in the presence of NADH and Zn2+. The rate acceleration gained by ribozyme catalysis was more than 6 orders of magnitude larger than the spontaneous reaction. Although the reversibility of phosphordiester and acyl transfer reactions catalyzed by ribozymes was known, that of other chemical reactions has not been well established. This study has demonstrated the reversibility of a hydride transfer chemistry catalyzed by the ADH ribozyme. Most interestingly, the ribozyme shares many features with the protein ADHs, e.g., reversibility and NADH/Zn2+ dependence.  相似文献   

11.
12.
Polymerization and self-assembly of proteins into nanoaggregates of different sizes and morphologies (nanoensembles or nanofilaments) is a phenomenon that involved problems in various neurodegenerative diseases (medicine) and enzyme instability/inactivity (biotechnology). Thermal polymerization of horse liver alcohol dehydrogenase (dimeric) and yeast alcohol dehydrogenase (tetrameric), as biotechnological ADH representative enzymes, was evaluated for the development of a rational strategy to control aggregation. Constructed ADH nuclei, which grew to larger amorphous nanoaggregates, were prevented via high repulsion strain of the net charge values. Good correlation between the variation in scattering and λ −2 was related to the amorphousness of the nanoaggregated ADHs, shown by electron microscopic images. Scattering corrections revealed that ADH polymerization was related to the quaternary structural changes, including delocalization of subunits without unfolding, i.e. lacking the 3D conformational and/or secondary-ordered structural changes. The results demonstrated that electrostatic repulsion was not only responsible for disaggregation but also caused a delay in the onset of aggregation temperature, decreasing maximum values of aggregation and amounts of precipitation. Together, our results demonstrate and propose a new model of self-assembly for ADH enzymes based on the construction of nuclei, which grow to formless nanoaggregates with minimal changes in the tertiary and secondary conformations.  相似文献   

13.
Alcohol dehydrogenase (ADH) from permeabilized brewer's yeast was immobilized on derived attapulgite nanofibers via glutaraldehyde covalent binding. The effect of immobilization on ADH activity, optimum temperature and pH, thermal, pH and operational stability, reusability of immobilized ADH, and bioreduction of ethyl 3-oxobutyrate (EOB) to ethyl(S)-3-hydroxybutyrate ((S)-EHB) by the immobilized ADH were investigated. The results show the immobilized ADH retained higher activity over wider ranges of pH and temperature than those of the free. The optimum temperature and pH were 7.5 and 35 °C, respectively, and 58% of the original activity was retented after incubation at 35 °C for 32 h. More importantly, in bioreduction of EOB mediated by immobilized ADH, the conversion of substrate and enantiomeric excess (ee) of product reached 88% and 99.2%, respectively, within 2 h and retained about 42% of the initial activity after eight cycles.  相似文献   

14.
A spectrophotometric method is proposed for the determination of 1,2-propylene glycol. It is based on the ADH/ AlDH catalyzed oxidation of propylene glycol by NAD+. The NADH formed is measured at 340 nm. Alcohol dehydrogenase from equine liver was found to be much more effective than that of yeast. No enantiomeric selectivity for s(+) propylene glycol was observed. A linear relation was found in the concentration range from 5 to 50 mg/L. The method achieves a correlation coefficient of r = 0.996 and a relative standard deviation of 1.37%. The limit of quantitation was calculated to 9.6 mg/L. Since the total reaction volume was restricted to 800 μL, only 2.8 units of AlDH and 8 units of ADH were sufficient to develop the final absorption within 30 min.  相似文献   

15.
Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.  相似文献   

16.
This paper describes the phosphorescence emission and decay times of NAD+ and its fluorescent etheno derivative, epsilon-NAD+, in the pyrazole ternary complex with horse liver alcohol dehydrogenase (ADH). We show that the epsilon-NAD+ triplet state, as well as the tryptophan triplet state, can be utilized to monitor the coenzyme-enzyme interaction. The decays of NAD+ and AMP are single exponential, and the lifetimes are the same within experimental error. The phosphorescence lifetimes, evaluated as single exponentials, are slightly shorter in epsilon-NAD+ than they are in epsilon-AMP. Whereas the decay of epsilon-AMP was adequately fit by a single exponential with a time constant of very close to 0.5 s, it was necessary to fit the decay of epsilon-NAD+ to a double exponential. Ternary complexes with NAD+ excited at 297 nm exhibit decay kinetics nearly identical to those of ADH by itself. On the other hand, when excitation of the epsilon-NAD+ ternary complex is provided at 313 nm, where there is very little absorption by either tryptophan residue, the decay law of the ternary complex is similar to that of epsilon-NAD+ in solution. Our results demonstrate that NAD+ and epsilon-NAD+ quench tryptophan phosphorescence in ADH. Normalizing the phosphorescence intensity to the 0-0 vibronic band assigned to Trp-15 (blue-edge), we calculate a 21% decrease in the phosphorescence associated with Trp-314 at stoichiometric saturation of the coenzyme binding sites with NAD+ in the ternary complex. When the active sites are saturated with epsilon-NAD+, the relative phosphorescence due to Trp-314 decreases by 63%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study shows that incorporation of [Rub2m-OH]2+ at the N-terminus of the Fs peptide enhances its stability by approximately 0.15 kcal/mol through the mechanism of dipole-dipole coupling at the excited state, suggesting that photoinduced charge generation at a well-controlled and specific location provides a convenient means to trigger helix-coil transition on nanosecond or even faster time scales.  相似文献   

18.
Borrelia burgdorferi sensu lato is a tick-borne pathogen that causes Lyme disease. The characterization of membrane proteins from this and other pathogens may yield a better understanding of the mechanisms of infection and information useful for vaccine design. Characterization of the highly hydrophobic Borrelia outer membrane component P13 from a mutant (OspA- OspB- OspC- and OspD-) strain was undertaken by use of a combination of mass spectrometric methods. In a previous investigation, an electrospray ionization (ESI) mass spectrum of the intact protein provided an average molecular weight that was 20 Da lower than the predicted molecular weight. The mass deviation could be explained by a modification of the N-terminus of the protein such as pyroglutamylation (-17 Da) in combination with the experimental error of measurement, however more information was required. New structural information for this membrane protein was provided by peptide mapping with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) and sequencing with ESI-quadrupole-TOF tandem MS.  相似文献   

19.
Hexanal and hexanoic acid have number of applications in food and cosmetic industry because of their organoleptic characteristics. Problems like low yields, formation of unwanted by-products, and large quantities of waste in their traditional production processes are the reasons for developing new production methods. Biotransformation in a microreactor, as an alternative to classical synthesis processes, is being investigated. Because conditions in microreactors can be precisely controlled, the quality of the product and its purity can also be improved. Biocatalytic oxidation of hexanol to hexanal and hexanoic acid using suspended and immobilized permeabilized whole baker’s yeast cells and suspended and immobilized purified alcohol dehydrogenase (ADH) was investigated in this study. Three different methods for covalent immobilization of biocatalyst were analyzed, and the best method for biocatalyst attachment on microchannel wall was used in the production of hexanal and hexanoic acid.  相似文献   

20.
A spectrophotometric method is proposed for the determination of 1,2-propylene glycol. It is based on the ADH/ AlDH catalyzed oxidation of propylene glycol by NAD+. The NADH formed is measured at 340 nm. Alcohol dehydrogenase from equine liver was found to be much more effective than that of yeast. No enantiomeric selectivity for s(+) propylene glycol was observed. A linear relation was found in the concentration range from 5 to 50 mg/L. The method achieves a correlation coefficient of r = 0.996 and a relative standard deviation of 1.37%. The limit of quantitation was calculated to 9.6 mg/L. Since the total reaction volume was restricted to 800 μL, only 2.8 units of AlDH and 8 units of ADH were sufficient to develop the final absorption within 30 min. Received: 16 April 1997 / Revised: 19 June 1997 / Accepted: 25 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号