首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The thermal transformation of Na2C2O4 was studied in N2 atmosphere using thermo gravimetric (TG) analysis and differential thermal analysis (DTA). Na2C2O4 and its decomposed product were characterized using a scanning electron microscope (SEM) and the X-ray diffraction technique (XRD). The non-isothermal kinetic of the decomposition was studied by the mean of Ozawa and Kissinger–Akahira–Sunose (KAS) methods. The activation energies (E α) of Na2C2O4 decomposition were found to be consistent. Decreasing E α at increased decomposition temperature indicated the multi-step nature of the process. The possible conversion function estimated through the Liqing–Donghua method was ‘cylindrical symmetry (R2 or F1/2)’ of the phase boundary mechanism. Thermodynamic functions (ΔH*, ΔG* and ΔS*), calculated by the Activated complex theory and kinetic parameters, indicated that the decomposition step is a high energy pathway and revealed a very hard mechanism.  相似文献   

2.
TiO2–CeO2 oxides for application as ceramic pigments were synthesized by the Pechini method. In the present work the polymeric network of the pigment precursor was studied using thermal analysis. Results obtained using TG and DTA showed the occurrence of three main mass loss stages and profiles associated to the decomposition of the organic matter and crystallization. The kinetics of the degradation was evaluated by means of TG applying different heating rates. The activation energies (E a) and reaction order (n) for each stage were determined using Horowitz–Metzger, Coats–Redfern, Kissinger and Broido methods. Values of E a varying between 257–267 kJ mol–1 and n=0–1 were found. According to the kinetic analysis the decomposition reactions were diffusion controlled.  相似文献   

3.
In this work the synthesis of CoFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposites was studied via the sol–gel method, using the polymerized complex route. The polymerized precursors obtained by the reaction of citric acid, ethylene glycol, tetraethylorthosilicate, ferric nitrate, and cobalt nitrate or nickel chloride were characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. NMR and IR spectra of the precursors, without and with metallic ions, show the formation of polymeric chains with ester and ether groups and complexes of metal-polymeric precursor. The nanocomposites were obtained by the thermal decomposition of the organic fraction and characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). XRD patterns show the formation of CoFe2O4 and NiFe2O4 in an amorphous silica matrix above 400 °C in both cases. When the calcination temperature was 800 °C the particle size of the crystalline phases, calculated using the Scherrer equation, reached ∼35 nm for the two oxides. VSM plots show the ferrimagnetic behavior that is expected for this type of magnetic material; the magnetization at 12.5 KOe of the CoFe2O4-SiO2 and NiFe2O4-SiO2 compounds was 29.5 and 17.4 emu/g, respectively, for samples treated at 800 °C.  相似文献   

4.
The sequence of phases occurring during treatment of lanthanum sulfate, La2(SO4)3 and lanthanum oxysulfate, La2O2SO4 in a hydrogen flow is established. The temperature ranges in which homogeneous La2O2S is produced are revealed: when La2(SO4)3 is a precursor, the range is 770–1220 K; in the case of La2O2SO4, the interval is 950–1220 K. The kinetic curves showing the time dependence of the yield of La2O2S is constructed and treated using the Avrami-Erofeev and contracting volume equations. The activation energies of the reactions are determined.  相似文献   

5.
The formation of Barium monotungstate (BaWO4) particles in equimolar powder mixtures of BaCO3 and WO3 was examined under isothermal and non-isothermal conditions upon heating in air at 25–1200 °C, using thermogravimetry. Concurrence of the observed mass loss (due to the release of CO2) to the occurrence of the formation reaction was evidenced. Accordingly, the extent of reaction (x) was determined as a function of time (t) or temperature (T). The xt and xT data thus obtained were processed using well established mathematical apparatus and methods, in order to characterize nature of reaction rate-determining step, and derive isothermal and non-isothermal kinetic parameters. Moreover, the reaction mixture quenched at various temperatures (600–1,000 °C) in the reaction course was analyzed by various spectroscopic and microscopic techniques, for material characterization. The results obtained indicated that the reaction rate may be controlled by unidirectional diffusion of WO3 species across the product layer (BaWO4), which was implied to form on the barium carbonate particles. The isothermally determined activation energy (118–125 kJ/mol) was found to be more credible than that (245 kJ/mol) determined non-isothermally.  相似文献   

6.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

7.
Glasses have been synthesized in the system SiO2–Al2O3–Na2O–AlF3–LaF3–Er2O3. A base glass (in mol% 67SiO2–9Al2O3–20Na2O–Al2F6–3La2F6) was modified by 0.5, 0.75, 1, 1.25, 1.5, 2 and 5 mol% Er2O3, respectively. Glasses were prepared by conventional fusion method from 20 g batches. The glass transition temperature (T g), the jump-like changes of the specific heat (ΔC p) accompanying the glass transition and the enthalpy of crystallization (ΔH) were calculated. DTA measurements clearly reveal that the increase of the Er2O3 content in the glass changes the effects of crystallization and diminishes the thermal stability of the glassy network. In the same time the changes in the transition temperature are observed. The formation of NaLaF4 and Na1.45La9.31(SiO4)6(F0.9O1.1) as a main phase was confirmed. The diminishing of the thermal stability was connected with erbium which incorporated into Na1.45La9.31(SiO4)6(F0.9O1.1) structure.  相似文献   

8.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

9.
The SrFe12O19/poly (vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol-gel assisted electrospinning with ferric nitrate, strontium nitrate and PVP as starting reagents. Subsequently, the M-type strontium ferrite (SrFe12O19) nanofibers were derived from calcination of these precursors at 750–1,000 °C.The composite precursors and strontium ferrite nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The structural evolution process of strontium ferrite consists of the thermal decomposition and M-type strontium ferrite formation. After calcined at 750 °C for 2 h the single M-type strontium ferrite phase is formed by reactions of iron oxide and strontium oxide produced during the precursor decomposition process. The nanofiber morphology, diameter, crystallite size and grain morphology are mainly influenced by the calcination temperature and holding time. The SrFe12O19 nanofibers characterized with diameters of around 100 nm and a necklace-like structure obtained at 900 °C for 2 h, which is fabricated by nanosized particles about 60 nm with the plate-like morphology elongated in the preferred direction perpendicular to the c-axis, show the optimized magnetic property with saturation magnetization 59 A m2 kg−1 and coercivity 521 kA m−1. It is found that the single domain critical size for these M-type strontium ferrite nanofibers is around 60 nm.  相似文献   

10.
Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.  相似文献   

11.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

12.
The catalytic activity of dioxo-molybdenum(VI)-dichloro[4,4′-dicarboxylato-2,2′-bipyridine] covalently anchored through the carboxylate function to the surface of TiO2 has been tested for the oxidative degradation of 1-chloro-4-ethylbenzene in MeCN solution under argon and UV irradiation (λ = 254 nm). After 4–5 h of photochemical reaction, the Mo complex was reoxidized in the presence of O2 in the dark, and then the reaction was continued under argon. The reaction proceeds by the intermediate formation of 4′-chloroacetophenone that undergoes further decomposition to chlorobenzene, plus small amounts of oxygen-containing organochlorine compounds, CO2 and H2O. Similar results were obtained for the decomposition of 4′-chloroacetophenone under the same conditions, which also gave chlorobenzene as one of the main products. The ratio of [final product]/[Mo complex] increases during the decomposition of 1-chloro-4-ethylbenzene (up to 350–400% for 30–35 h of reaction), which provides evidence of a catalytic process. The probable photochemical reactions are discussed.  相似文献   

13.
A study concerned to thermogravimetric analysis is performed in cesium dihydrogen phosphate (CsH2PO4) that was synthesized, using cetyltrimethylammonium-bromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and mixture of (F-68:CTAB) with two mole ratio 0.06 and 0.12 as surfactant. The dehydration behavior of particles was studied using thermal gravimetric analysis and differential scanning calorimetric. Subsequently, the experimental results indicated that the first dehydration temperature in the range of 237–239 °C upon heating, the second peaks occur at temperature range 290–295 °C and overlapping in the thermogravimetric events is observed. The mass loss values are obtained in the range of 6.62–6.97 wt% that is less than reported theoretical value 7.8 wt%. These values show well compatibility of reaction CsH2PO4 to Cs2H2P2O7 with 3.92 wt% whereas mass loss value of CsH2PO4 to CsPO3 is less than theoretical value 7.8 wt%. The activation energy of two steps dehydration are calculated using Kissinger equation for the samples synthesized via CTAB and (F-68) with minimum value mass loss 6.62% and maximum value mass loss 6.97%, respectively. The calculation results reveal that the reaction rate in the first step (CsH2PO4 → Cs2H2P2O7) is faster than the second step (CsH2PO4 → CsPO3). The weight loss values of the samples demonstrate that existence of CTAB can be considered as effective factor which prevents more weight loss during the dehydration process.  相似文献   

14.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

15.
The main aim of this work was to synthesize the magnesium orthostannate doped by terbium cations and tested whether these materials can be used for colouring of the different materials, e.g. organic binder and ceramic glazes. Initial composition of pigments was counted according the general formula 2MgO(1 − x)SnO2xTbO2, where values of x varied from 0.1 to 0.5 in 0.1 steps. The simultaneous TG/DTA measurements of mixture containing tin oxide, magnesium carbonate hydroxide and terbium oxide showed that the formation of a new compound started at temperature 1,029 °C, but single-phase system was not prepared. Granulometric compositions of samples that were prepared by calcining at temperatures 1,300–1,400 °C are characterized by values of median (d 50) in range 4–8 μm. The calcining temperature 1,500 °C caused the increase of the particle sizes at around 12 μm. The composition of sample 2MgO–1.5SnO2–0.5TbO2 and heating temperature 1,500 °C are the most suitable conditions for preparation of colourfully interesting pigment that can be recommended also for colouring of ceramic glazes. Especially, for colouring of decorative lead containing glaze G 07091 containing 5 wt% of PbO and 8 wt% of Al2O3.  相似文献   

16.
Homogeneous manganocolumbite (MnNb2O6) was synthesized from Nb2O5 and MnO oxides. Powder sample was orthorhombic with unit cell parameters: α = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm and V = 0.4234 nm3. Heat capacity over the temperature range of 313–1253 K was measured in an inert atmosphere with combined thermogravimetry and calorimetry using NETZSCH STA 449C Jupiter thermoanalyzer. Melting point was 1767 ± 3 K, enthalpy of melting was 144 ± 4 kJ mol−1. Experimental heat capacity of MnNb2O6 is fitted to polynomial C pm = 221.46 + 3.03 · 10−3 T + −39.79 · 105 T −2 + 40.59 · 10−6 T 2.  相似文献   

17.
A complex oxalate precursor, CaCu3(TiO)4(C2O4)8·9H2O, (CCT-OX), was synthesized and the precipitate that obtained was confirmed to be monophasic by the wet chemical analyses, X-ray diffraction, FTIR absorption and TG/DTA analyses. The thermal decomposition of this oxalate precursor led to the formation of phase-pure calcium copper titanate, CaCu3Ti4O12, (CCTO) at ≥680°C. The bright-field TEM micrographs revealed that the size of the as synthesized crystallites to be in the 30–80 nm range. The powders so obtained had excellent sinterability resulting in high density ceramics which exhibited giant dielectric constants upto 40000 (1 kHz) at 25°C, accompanied by low dielectric losses, <0.07.  相似文献   

18.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

19.
Among the various positive electrode materials investigated for Li-ion batteries, spinel LiMn2O4 is one of the most important materials. Small particles of the active materials facilitate high-rate capability due to large surface to mass ratio and small diffusion path length. The present work involves the synthesis of submicron size particles of LiMn2O4 in a quaternary microemulsion medium. The precursor obtained from the reaction is heated at different temperatures in the range from 400 to 900 °C. The samples heated at 800 and 900 °C are found to possess pure spinel phase with particle size <200 nm, as evidenced from XRD, SEM, and TEM studies. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g−1 at C/5 rate, and there is a moderate decrease in capacity by increasing the rate of charge–discharge cycling. Studies also include charge–discharge cycling and ac impedance studies in temperature range from −10 to 40 °C. Impedance data are analyzed with the help of an equivalent circuit and a nonlinear least squares fitting program. From temperature dependence of charge-transfer resistance, a value of 0.62 eV is obtained for the activation energy of Mn3+/Mn4+ redox process, which accompanies the intercalation/deintercalation of the Li+ ion in LiMn2O4.  相似文献   

20.
The precursor of nanocrystalline BiFeO3 was obtained by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2CO3·10H2O as raw materials. The nanocrystalline BiFeO3 was obtained by calcining the precursor. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The data showed that highly crystallization BiFeO3 with rhombohedral structure (space group R3c (161)) was obtained when the precursor was calcined at 873 K for 2 h. The thermal process of the precursor experienced three steps, which involve the dehydration of adsorption water, hydroxide, and decomposition of carbonates at first, and then crystallization of BiFeO3, and at last decomposition of BiFeO3 and formation of orthorhombic Bi2Fe4O9. The mechanism and kinetics of the crystallization process of BiFeO3 were studied using DSC and XRD techniques, the results show that activation energy of the crystallization process of BiFeO3 is 126.49 kJ mol−1, and the mechanism of crystallization process of BiFeO3 is the random nucleation and growth of nuclei reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号