首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Doping Bi4V1.8Cu0.2O10.7 with niobium has led to the formation of the Bi4V1.8Cu0.2−xNbxO10.7+3x/2 solid solution. X-ray diffraction and thermal analysis have shown that only the compound with x=0.05 presents a tetragonal symmetry with a γ polymorph while the other compositions are of β polymorph. The influence of sintering temperature on the microstructure of the samples was investigated by the scanning electron microscopy (SEM). The ceramics sintered at temperatures higher than 820 °C present micro-craks. The evolution of the electrical conductivity with temperature and the degree of substitution has been investigated by impedance spectroscopy. Among all compositions studied the sample with x=0.05 presents the highest value of the conductivity.  相似文献   

2.
The minimum concentration of niobium to stabilize the fluorite-type f.c.c. phase in the Bi2O3–Nb2O5 oxide system at temperatures below 996 K was ascertained to be about 10 mol%. Thermal expansion, electrical conductivity and crystal lattice parameters of the Bi(Nb)O1.5+δ solid solutions decrease with increasing niobium content. Thermal expansion coefficients were calculated from the dilatometric data to be (10.314.5)×10−6 K−1 at temperatures in the range 300–700 K and (17.526.0)×10−6 K−1 at 700–1100 K. The conductivity of the Bi1− x Nb x O1.5+δ ceramics is predominantly ionic. The p-type electronic transference numbers of the Bi(Nb)O1.5+δ solid solutions in air were determined to be less than 0.1. Annealing at temperatures below 900 K results in a sharp decrease in conductivity of the Bi1− x Nb x O1.5+δ ceramics. Received: 18 August 1997 / Accepted: 20 October 1997  相似文献   

3.
Rietveld refinement of combined X-ray and neutron diffraction data has, within errors, confirmed the stoichiometries of two, cubic pyrochlore phases in the ZnOBi2O3Sb2O5 system. Neither phase has the ‘ideal’ stoichiometry, Zn2Bi3Sb3O14. One phase, P1, is a Zn-rich, Bi-deficient solid solution Zn2+xBi2.96−(xy)Sb3.04−yO14.04+δ. The other, P2, is a Bi-rich line phase, stoichiometry Zn2Bi3.08Sb2.92O14+δ. Both structures have a mixture of Bi, Zn on the A-sites and Zn, Sb on the B-sites. However, Zn is displaced off-centre in the A-sites to achieve lower co-ordination number with realistic ZnO bond lengths. Additional structural complexities arise from: displacement of O(2) atoms; partial occupancies of O(1) and O(2) sites; partial occupancy of a third, interstitial oxygen site, O(3). Since the multiplicities of the off-centre sites are much higher than those of the ideal positions, there is considerable possibility for correlated short range order throughout the structures.  相似文献   

4.
In this paper, pseudo-binary (Ag0.365Sb0.558Te)x-(Bi0.5Sb1.5Te3)1−x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9×104 to 15.6×104 Ω−1 m−1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi0.5Sb1.5Te3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi0.5Sb1.5Te3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag0.365Sb0.558Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag0.365Sb0.558Te in the Ag-doped Ag-Bi-Sb-Te system.  相似文献   

5.
The space group symmetry and crystal structure of Tl3SbS3−xSex compounds in the composition range 0 < x < 3 have been determined by a combination of powder X-ray diffraction, electron diffraction, and high-resolution electron microscopy. The incongruently melting compound Tl3SbSe3 has been shown to crystallize in cubic space group P213 with a = 9.435Å in a structure related to that of Langbeinite. The convergent beam electron diffraction pattern of Tl3SbS3 is in accord with the space group R3m determined by X-ray diffraction. The cubic Langbeinite-type structure is found for Tl3SbS3−xSex for 0.5 < x < 3 and for Tl3SbyAs1−ySe3 for 0.077 < y < 1.0. A five-component compound Tl3Sb0.5As0.5Se1.5S1.5 was also found to be cubic.  相似文献   

6.
A new defect solid solution, the series Na7/8(FeIII7/8+xTiIV9/8−2xSbVx)O4, was synthesized. Its homogeneity range is rather wide: 0 <- x ≤ 0.33. The incorporation of SbV gives rise to a progressive increase of the parameters of the orthorhombic unit cell. X-ray powder structure calculations point to a partial occupancy of the large double tunnels in a quadruple rutile-chain structure. A significant ordering of cations over the octahedral framework is observed, owing to a TiIV---SbV segregation. Electrical measurements emphasize a cationic conductivity, mainly related to a 1D motion of NaI cations. A transition from a low activation energy process—EA ≤ 0.20 eV—to a high activation energy one—EA ≈ 0.75 eV—systematically occurs at T ≈ 440°C, independent of the SbV concentration. A possible skew motion from a half tunnel to another one is proposed as a tentative explanation of the high-temperature conductivity mechanism.  相似文献   

7.
The stoichiometry, polymorphysm, and electrical behaviour of solid solutions of La0.5+y+xLi0.5−3xTi1−3yMn3yO3with perovskite-type structure have been studied. Data are given in the form of a solid solution triangle, phase diagrams, XRD patterns for the three polymorphs, A,β, and C, composition-dependence of their lattice parameters, and ionic and electronic conductivity plots. Microstruture and composition were studied by SEM/EDS and electron probe microanalysis. These compounds are mixed conductors. Ionic conductivity decreases when the amount of lithium diminishes and electronic conductivity increases with manganese content.  相似文献   

8.
Whitlockite solid solutions Ca9−x M x R(PO4)7 (M = Mg, Zn, Cd; R = Ln, Y) were synthesized as powders and ceramics using solid-phase synthesis. Dielectric investigations and second harmonic generation (SHG) tests showed that ferroelectric (FE) phase transitions existing in samples with x = 0 change to antiferro-electric (AFE) transitions between two centrosymmetrical phases in samples with x = 1 or 1.5. The calcium-ion solid electrolyte conductivity in Ca9−x M x R(PO4)7 at high temperatures appears either as a result of an antiferroelectric-paraelectric (AFE-PE) phase transition (for x = 1) or as a result of a separate phase transition near 1173 K (for x = 1.5). The appearance of dielectric properties in whitlockites is discussed with reference to the features of their polar and centrosymmetrical structures. Original Russian Text ? A.V. Teterskii, S.Yu. Stefanovich, B.I. Lazoryak, D.A. Rusakov, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 3, pp 357–363.  相似文献   

9.
采用水热法,在较低温度下合成了系列Bi2Mo1-xWxO6固溶体。结果表明,W的替代抑制了固溶体的晶粒生长,导致了较小的晶粒尺寸。随着x的增加,红外光谱中840cm-1处M-O键的振动频率νM-O有规律地向低频率方向移动,表明Mo6+离子逐步被W6+替代,生成了无限互溶的固溶体。光吸收性能研究表明,随着W6+逐步替代Mo6+,带隙出现了先降后升的趋势,x=0.4时带隙最小。而固溶体的光催化性能随着x的增加,出现了先增后减的趋势,x=0.4时光催化活性最高。此外,含W样品的光催化活性高于Bi2MoO6。这与固溶体的带隙、带结构和晶粒尺寸变化有关。  相似文献   

10.
Structural, dielectric and piezoelectric properties of (1−x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of εr(T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process.  相似文献   

11.
The in situ behavior of distorted perovskite La0.5−xBixCa0.5MnO3 (x=0.1, 0.15, 0.2) under high pressure has been studied by energy-dispersive X-ray diffraction in a diamond anvil cell. An abnormal change of the 202–040 d-spacing ascribed to the disappearance of the distortion mode Q2 in the MnO6 octahedra is observed at 1.2, 1.4, and 1.6 GPa, respectively, and it results in a reduction of the Jahn–Teller distortion commonly existing in the manganites. Effect of the unique 6s2 long-pair character of the Bi3+ ion on the pressure dependence of the lattice distortion is discussed.  相似文献   

12.
The investigation of the n=1 member of the Ruddlesden Popper family, Pr1−xCa1+xMnO4, using electron microscopy, transport and magnetic measurements shows that these 2D manganites exhibit long-range charge–orbital ordering over a wide composition range (0.50x0.80). These oxides show a remarkably high TCO temperature depending on the x value, up to 330 K, the highest that has been observed to date in 2D manganites. They are characterized by the appearance of a smooth structural transition from P- to C-type inside the charge-ordered state. The high-resolution electron microscopy images of Pr0.5Ca1.5MnO4 registered at room temperature evidence a system of double stripes similar to those observed for Bi0.5Sr0.5MnO3, suggesting that double stripes of one sort of manganese alternate with double or quadruple stripes of a second sort of manganese.  相似文献   

13.
Single-phase pyrochlore-type specimens of Bi1.5Zn0.92Nb1.5O6.92 were studied using combined electron, X-ray and neutron powder diffraction techniques. Rietveld refinements using neutron powder diffraction data confirmed an average pyrochlore structure A2B2O6O′ (Fd&3macr;m, a=10.5616(1) Å) with both Bi and Zn mixed on the A-sites. However, refinements revealed significant local deviations from the ideal pyrochlore arrangement which were caused by apparent displacive disorder on both the A and O′ sites. The best fit was obtained with a disordered model in which the A-cations were randomly displaced by ∼0.39 Å from the ideal eight-fold coordinated positions. The displacements occur along the six 〈112〉 directions perpendicular to the O′-A-O′ links. In addition, the O′ ions were randomly displaced by ∼0.46 Å along all 12 〈110〉 directions. Crystal-chemical considerations suggest the existence of short-range correlations between the O′ displacements and both the occupancy of the A-sites (i.e., Bi or Zn) and the directions of the A-cation displacements. The combined A-cation and O′ displacements change the coordination sphere of the A-cations from 8 to (5+3); the resulting coordination environment of the A-cations bears similarities to that of the (5+1)coordinated Zn in zirconolite-like Bi2Zn2/3Nb4/3O7. The observed displacive disorder in the A2O′ network of the Bi1.5Zn0.92Nb1.5O6.92 structure involves atoms associated with the lowest-frequency vibrational bending mode, and is likely responsible for both the high dielectric constant and the dielectric relaxation reported for this compound.  相似文献   

14.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

15.
MnOx-SnO2 composite oxides prepared by a redox coprecipitation route were tested in selective catalytic reduction of NO by NH3 at low temperatures. The results showed that the MnOx-SnO2 catalyst with a Mn/(Mn+Sn) molar ratio of 75% exhibited the best performance, on which NO conversion of 100% could be achieved at temperatures of 120–200 °C. The characterization results of N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the higher surface area, the formation of solid solution between manganese and tin oxides, and the high oxidation state manganese species were responsible for the high catalytic activity of the MnOx-SnO2 catalyst.  相似文献   

16.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

17.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

18.
Satellite dark field (SDF) imaging is used to show that there is a definite change in symmetry on moving across the two-phase region separating the so-called "defect fluorite" and C-type sesquioxide solid solution regions in (1 - x)CeO2 · xRO1.5 and (1 - x )ZrO2 · xRO1.5 systems. SDF images of the "defect fluorite" side of the two-phase region are characterized by a microdomain texture on the 100-200 Å scale and the local symmetry within any one of these microdomains is shown to be lower than cubic. Corresponding SDF images of the C-type sesquioxide side of the two-phase region are by contrast homogeneous and consistent with Ia3 space group symmetry. The nature of the local oxygen vacancy distribution on either side of the two-phase region is discussed and a possible model for the "defect fluorite" side of the two-phase region proposed.  相似文献   

19.
A new niobium phosphate, Ca0.5+xCs2Nb6P3O24 has been isolated. It crystallizes in the R32 space group, with the following parameters of the hexagonal cell: aH = 13.379 Å, cH = 10.371 Å. The determination of the structure by a single crystal X-ray diffraction study shows that its host lattice [Nb6P3O24] can be described as the assemblage of mixed chains [Nb2PO13] running along cH in which one PO4 tetrahedron alternates with two NbO6 octahedra. This framework delimits huge tunnels where the cesium cations are located and cages formed by [Nb6P3O36] units occupied by calcium. The most striking feature of this framework deals with its similarity with the hexagonal tungsten bronze of Magnéli (HTB). The latter is discussed here by considering the stacking along c of [Nb2PO8] layers whose geometry is closely related to that of the HTBs. The possibility of nonstoichiometry leading to a mixed valency of niobium is considered.  相似文献   

20.
The first ternary compound in the Nb–Ni–Sb system, Nb28Ni33.5Sb12.5, has been synthesized and its structure has been determined by single-crystal X-ray diffraction methods. Nb28Ni33.5(2)Sb12.5(2) adopts the X-phase structure type (orthorhombic, space group Pnnm, Z=1, a=13.2334(5) Å, b=16.5065(7) Å, c=5.0337(2) Å), which belongs to the set of tetrahedrally close-packed (TCP) structures adopted by many intermetallic compounds. Typical of such TCP structures, the atoms reside in sites of high coordination number, with Ni and Sb in CN12 and Nb in CN14, -15, and -16 sites. The relative importance of various metal–metal bonding interactions is discussed on the basis of extended Hückel band structure calculations. Nb28Ni33.5Sb12.5 displays metallic behavior with a room-temperature resistivity of 2.3×10−4 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号