首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cloud point temperature, T(c), was investigated for aqueous solutions of poly(oxyethylene) alkyl ethers, C(n)E(m), and their mixtures. The experimental T(c)'s for single surfactant systems were analyzed according to the Flory-Huggins model for cloud point phenomenon, and the enthalpy and the entropy changes associated with the process of the separation of micellar solution into pure water and pure surfactant were estimated. It was found that the enthalpy-entropy compensation relationship holds for this process. The Flory-Huggins model was extended to the binary surfactant mixtures, and the expression of T(c) as a function of the composition was derived assuming the regular solution for mixed micelles. The experimental results of T(c) obtained for mixtures of C(n)E(m) were well reproduced by the model calculation. Discussion is given concerning the interaction parameters of different surfactant species in mixed micelles determined by this model calculation.  相似文献   

2.
We study the phase behavior and microstructure of alkyl-beta-monoglucosides with intermediate chain lengths (octyl- and nonyl-beta-glucoside) in aqueous solutions containing ammonium sulfate and poly(ethylene glycol) (PEG). When the glucoside surfactants are mixed with PEG of molecular weight 3350 or larger, two different phase transitions are observed in the temperature range 0-100 degrees C, with lower and upper miscibility gaps separated by a one-phase isotropic region. Isothermal titration calorimetry is used to quantify the effect of PEG on the micellization properties of the alkyl monoglucosides, whereas small-angle neutron scattering gives insight into the microstructure of the surfactant/polymer mixtures near the liquid-liquid phase boundary. Results show that the range and the strength of the interactions in these solutions are highly affected by the presence of PEG. Solutions with nonyl-beta-glucoside contain larger micelles than those with octyl-beta-glucoside, and the intermicellar interactions are much stronger and longer ranged. The relevance of these findings for membrane protein crystallization is discussed.  相似文献   

3.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

4.
We have used light scattering, turbidimetry, and thermodynamic analysis to study the phase diagram of concentrated aqueous mixtures of the bovine lens proteins, gammaB crystallin, and alpha crystallin. We find that dilute alpha crystallin raises the phase separation temperature of concentrated gammaB crystallin, while more concentrated alpha crystallin suppresses phase separation. Very concentrated alpha/gammaB mixtures can reversibly cloud above 37 degrees C, even though gammaB alone phase separates only below temperatures near 0 degrees C, and alpha does not phase separate. At the scattering vector magnitude used, high-concentration alpha/gammaB mixtures scatter less light than the weighted average of their component alpha and gammaB solutions, while low-concentration alpha/gammaB mixtures scatter more than such a weighted average. We use a mean-field thermodynamic analysis of such ternary mixtures to show that the observed light scattering and phase boundaries of alpha and gammaB crystallin mixtures give evidence for prominent local fluctuations of relative protein composition. In the single phase, these fluctuations scatter comparatively little light, but are associated with enhanced thermodynamic instability. By applying this analysis to the experimental tie lines we estimate the magnitude of the saddlelike component of the free energy near the aqueous-gammaB critical point.  相似文献   

5.
On the basis of a better analytical exploitation of acid-induced cloud point approach, a systematic study on the phase behaviour of acid aqueous solutions of anionic surfactants and factors affecting anionic surfactant-mediated extractions was performed. The anionic surfactants investigated were alkylsulphonates (ASS) with alkylchain lengths comprised between 8 and 16 carbon atoms. The critical hydrochloric acid concentration (minimal acid concentration required to separation in two liquid phases) was found to increase as alkylchain length of the anionic surfactant increased from 10 to 14. Non-acid-induced liquid-liquid phase separation was observed for sodium octanesulphonate (SOS) or sodium hexadecyl sulphonate (SHS) in the hydrochloric concentration range 0-10 M. Acid aqueous solutions of sodium decylsulphonate (SDeS) and sodium dodecylsulphonate (SDoS) separated into two liquid phases at temperatures ranging between 10 and 80 °C, while temperatures >35 °C were required for sodium tetradecylsulphonate. The influence on extraction efficiency and concentrating ability of experimental variables such as hydrophobicity and concentration of surfactant, nature and concentration of analyte, hydrochloric acid concentration, time and temperature of extraction and time of equilibration and centrifugation was examined. Advantages provided by anionic surfactant-mediated extractions over the use of non-ionic surfactants (cloud point extractions) are discussed.  相似文献   

6.
Self-diffusion coefficients were obtained by means of NMR diffusometry for differing ratios of n-decyl-beta-D-glucopyranoside (C10G1) and n-nonyl-beta-D-glucopyranoside (C9G1) surfactant mixtures, along dilution lines through the micellar region of the ternary C9G1/C10G1/H2O phase diagram. Networks of bicontinuous micelles have been suggested to exist throughout the micellar regions of the phase diagram. A phase separation into two coexisting liquid solutions is observed in the dilute, C10G1-rich regions of the phase diagram. The fact that the dilution curves follow scaling relations pertaining to surfactant diffusion in a network for mixtures rich in C10G1 indicates that the phase separation is due to differences in the networks in different micellar regions of the phase diagram; networks remain largely intact despite dilution down to the phase separation in the C10G1-rich region, whereas networks with scissions are predicted to exist in the C9G1-rich regions of the micellar phase.  相似文献   

7.
This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.  相似文献   

8.
The limiting solubility of fatty acids in micellar solutions of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) is experimentally determined. Saturated straight-chain fatty acids with n=10, 12, 14, 16, and 18 carbon atoms were investigated at working temperatures of 25, 30, 35, and 40°C. The rise of the fatty acid molar fraction in the micelles is accompanied by an increase in the equilibrium concentration of acid monomers in the aqueous phase. Theoretically, the solubility limit is explained with the precipitation of fatty acid crystallites when the monomer concentration reaches the solubility limit of the acid in pure water. In agreement with theory, the experiment shows that the solubility limit is proportional to the surfactant concentration. For ideal mixtures, the plot of the log of solubility limit vs. the chainlength, n, must be a straight line, which is fulfilled for n=14, 16, and 18. For the fatty acids of shorter chains, n=10 and 12, a deviation from linearity is observed, which is interpreted as non-ideal mixing due to a mismatch between the chainlengths of the surfactant and acid. The data analysis yields the solubilization energy and the interaction parameter for the fatty acid molecules in surfactant micelles. By using the determined parameter values, phase diagrams of the investigated mixed solutions are constructed. The four inter-domain boundary lines intersect in a quadruple point, whose coordinates have been determined. The results can be applied for the interpretation and prediction of the solubility, and phase behavior of medium- and long-chain fatty acids and other amphiphiles that are solubilizable in micellar surfactant solutions, as well as for determining the critical micellization concentration (CMC) of the respective mixed solution.  相似文献   

9.
The wormlike micelles formed with the binary mixtures of surfactant polyoxyethylene alkyl ethers (CiEj), C10E5 + C14E5 (Mix1) and C14E5 + C14E7 (Mix2), were characterized by static (SLS) and dynamic light scattering (DLS) experiments. The SLS results have been analyzed with the aid of the light scattering theory for micelle solutions, thereby yielding the molar mass Mw(c) as a function of c along with the cross-sectional diameter d of the micelle. The observed Kc/DeltaR0 as a function of c, the mean-square radius of gyration (S2) and the hydrodynamic radius RH as functions of Mw have been well described by the theories for the wormlike spherocylinder model. It has been found that the micellar length increases with increasing concentration c or with raising temperature T irrespective of the composition of the surfactant mixtures. The length of the Mix1 and Mix2 micelles at fixed c and T steeply increases with increasing weight fraction wt of C14E5 in both of the surfactant mixtures, implying that the micelles greatly grow in length when the surfactant component with longer alkyl group or with shorter oxyethylene group increases in the mixture. The results are in line with the findings for the micelles of the single surfactant systems where the CiEj micelles grow in length to a greater extent for larger i and smaller j. Although the values of d and the spacing s between the adjacent surfactant molecules on the micellar surface do not significantly vary with composition of the surfactant mixture, the stiffness parameter lambda-1 remarkably decreases with wt in both Mix1 and Mix2 micelles, indicating that the stiffness of the micelle is controlled by the relative strength of the repulsive force due to the hydrophilic interactions between oxyethylene groups to the attractive one due to the hydrophobic interactions between alkyl groups among the surfactant molecules.  相似文献   

10.
The possibility to use monocarboxylic acids and their mixtures with amines for copper concentrating by the way of micellar extraction at cloud point temperature, and later atomic absorption spectrometry (AAS) determination was investigated. Under the optimum conditions, preconcentration of 100 ml of water sample in the presence of 1% non-ionic surfactant OP-10, 0.005 M capric acid and 0.01 M octylamine permitted the detection of 0.01 μg ml−1 copper. The proposed method has been applied to the AAS determination of copper in water samples after cloud point extraction.  相似文献   

11.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

12.
The effect of the main factors on the extraction of the silver complexes of 4-(2-thiazolylazo)resorcinol and 1-(2-thiazolylazo)-2-naphthol into a micellar phase of a nonionic surfactant at the cloud point was studied. Conditions were found for the atomic absorption determination of silver with micellar extraction preconcentration into an OP-7 phase upon heating.  相似文献   

13.
The structures of the mixed anionic/nonionic surfactant micelles of SDS/C12E6 and SDS/C12E8 have been measured by small angle neutron scattering (SANS). The variations in the micelle aggregation number and surface charge with composition, measured in D2O and in dilute electrolyte, 0.01 and 0.05 M NaCl, provide data on the relative roles of the surfactant headgroup steric and electrostatic interactions and their contributions to the free energy of micellization. For the SDS/C12E8 mixture, solutions increasingly rich in C12E8 show a modest micellar growth and an increase in the surface charge. The changes with increasing electrolyte concentration are similarly modest. In contrast, for the SDS/C12E6 mixture, solutions rich in C12E6 show a more significant increase in aggregation number. Furthermore, electrolyte has a more substantial effect on the aggregation for the nonionic (C12E6) rich mixtures. The experimental results are discussed in the context of estimates of the steric and electrostatic contributions to the free energy of micellization, calculated from the molecular thermodynamic approach. The variation in micelle surface charge is discussed in the context of the "dressed micelle" theory for micelle ionization, and other related data.  相似文献   

14.
In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L-1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L−1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.   相似文献   

15.
A dielectric relaxation study of binary mixtures of nonionic surfactant C12E5 + water has been made as a function of temperature in the isotropic micellar, lamellar, and hexagonal regions of the phase diagram. Two dielectric dispersion steps were found and could be assigned to the intermolecular cooperative dynamics of water at the micellar interface and in the bulk water domains. A quantitative analysis is given. The relaxation amplitudes were used to determine effective hydration numbers. The activation energies of water relaxation were calculated from the relaxation times. The data indicate weaker surfactant-water and water-water interactions near the micellar interface compared to those of bulk liquid water. Further analysis revealed the presence of water clusters large enough to show a cooperative relaxation mode even at high surfactant concentrations. However, the relaxation time of this mode is larger compared to that of pure water. This points out the importance of confinement effects on water dynamics.  相似文献   

16.
The micellar extraction of barium with phases of nonionic surfactant Triton X-100 was studied in the presence of aliphatic monocarboxylic acids, crown ethers, and Carboxyarsenazo and its mixtures with cetylpyridinium chloride and octylamine. It was shown that the complete extraction of barium into the micellar phase was attained using Carboxyarsenazo and cationic surfactants in the presence of octylamine through the formation of a ternary hydrophobic complex. The conditions for the determination of the atomic absorption of barium in water with preconcentration into the nonionic surfactant phase at the cloud point temperature were developed.  相似文献   

17.
We report our investigations into the self-assembly of sodium oleate (NaOA) in the presence of a binding salt (triethylammonium chloride, Et(3)NHCl) simple salt (potassium chloride, KCl). Both salts promote the growth of long, wormlike micelles in NaOA solutions, thereby increasing the fluid viscosity. The significant difference with the Et(3)NHCl salt is that it also modifies the phase behavior of NaOA solutions. Specifically, NaOA/Et(3)NHCl solutions display cloud points upon heating, followed by phase separation into two liquid phases. Such cloud point behavior is rarely observed in ionic surfactant systems, although it is common in nonionic surfactant solutions. Interestingly, while cloud points are not observed with KCl, the addition of KCl to NaOA/Et(3)NHCl solutions further lowers the cloud point temperature. Also, in the case of tetraethylammonium halide salt, neither a cloud point nor an increase in viscosity is observed. The clouding in the case of Et(3)NHCl is attributed to the temperature-induced aggregation of anionic micelles whose surface is covered by bound counterions.  相似文献   

18.
Clouding phenomena and phase behaviors of two nonionic surfactants, Triton X-114 and Triton X-100, in the presence of either hydroxyethyl cellulose (HEC) or its hydrophobically modified counterpart (HMHEC) were experimentally studied. Compared with HEC, HMHEC was found to have a stronger effect on lowering the cloud point temperature of a nonionic surfactant at low concentrations. The difference in clouding behavior can be attributed to different kinds of molecular interactions. Depletion flocculation is the underlying mechanism in the case of HEC, while the chain-bridging effect is responsible for the large decrease of cloud point for HMHEC. Composition analyses for the formed macroscopic phases were carried out to provide support for associative phase separation for the case of HMHEC, in contrast to segregative phase separation for HEC. An interesting three-phase-separation phenomenon was reported in some HMHEC/Triton X-100 mixtures at high surfactant concentrations.  相似文献   

19.
Surfactants can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. In this article, the aqueous solubilization of the nonsteroidal, antiinflammatory drug ibuprofen is studied experimentally and theoretically in micellar solutions of anionic (sodium dodecyl sulfate, SDS), cationic (dodecyltrimethylammonium bromide, DTAB), and nonionic (dodecyl octa(ethylene oxide), C12E8) surfactants possessing the same hydrocarbon "tail" length but differing in their hydrophilic headgroups. We find that, for these three surfactants, the aqueous solubility of ibuprofen increases linearly with increasing surfactant concentration. In particular, we observed a 16-fold increase in the solubility of ibuprofen relative to that in the aqueous buffer upon the addition of 80 mM DTAB and 80 mM C12E8 but only a 5.5-fold solubility increase upon the addition of 80 mM SDS. The highest value of the molar solubilization capacity (chi) was obtained for DTAB (chi = 0.97), followed by C12E8 (chi = 0.72) and finally by SDS (chi = 0.23). A recently developed computer simulation/molecular-thermodynamic modeling approach was extended to predict theoretically the solubilization behavior of the three ibuprofen/surfactant mixtures considered. In this modeling approach, molecular-dynamics (MD) simulations were used to identify which portions of ibuprofen are exposed to water (hydrated) in a micellar environment by simulating a single ibuprofen molecule at an oil/water interface (modeling the micelle core/water interface). On the basis of this input, molecular-thermodynamic modeling was then implemented to predict (i) the micellar composition as a function of surfactant concentration, (ii) the aqueous solubility of ibuprofen as a function of surfactant concentration, and (iii) the molar solubilization capacity (chi). Our theoretical results on the solubility of ibuprofen in aqueous SDS and C12E8 surfactant solutions are in good agreement with the experimental data. The ibuprofen solubility in aqueous DTAB solutions was somewhat overpredicted because of challenges associated with accurately modeling the strong electrostatic interactions between the anionic ibuprofen and the cationic DTAB. Our results indicate that computer simulations of ibuprofen at a flat oil/water interface can be used to obtain accurate information about the hydrated and the unhydrated portions of ibuprofen in a micellar environment. This information can then be used as input to a molecular-thermodynamic model of self-assembly to successfully predict the aqueous solubilization behavior of ibuprofen in the three surfactant systems studied.  相似文献   

20.
We have investigated the static and dynamic structures of nonionic surfactant micelles, a C(12)E(8)/water binary system, during the disorder-order transition using small angle x-ray scattering, static light scattering, and dynamic light scattering techniques. In the disordered phase, the micelles have spherical shape and intermicellar interactions are governed by the hard core and weak long ranged attractive potentials. With increase of the micellar concentration, the disordered micelles transform to the three characteristic ordered micellar phases, a hexagonally close packed lattice, a body centered cubic lattice, and an A15 lattice having area-minimizing structure. The stability of these phases is well explained by balance of a close packing rule and a minimal-area rule proposed by Ziherl and Kamien [Phys. Rev. Lett. 85, 3528 (2000)]. The role of hydrodynamic interactions in surfactant micellar solutions was compared with that in hard sphere colloidal particle suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号