首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A capillary electrophoresis method was developed for the enantioseparation of three novel cyclooxygenase-2 (COX-2) inhibitor drugs (E-6259, E-6036 and E-6087) with anti-inflammatory and analgesic activities using sulfobutyl ether-beta-cyclodextrin (SBE-beta-CD) as a chiral selector. The use of 50 mM sodium tetraborate at pH 9.2 with 30% v/v methanol, containing 7.1 mM SBE-beta-CD, as a background electrolyte (BGE) allowed the complete enantioseparation of the three neutral racemic mixtures (resolution = 2.4, 3.0 and 8.7, respectively) and their corresponding metabolites (oxidation products) in a single run. Migration times were shortened with some loss of enantioresolution by adding 1.75 mM dimethyl-beta-cyclodextrin (DM-beta-CD) to the previous BGE (dual CD system). The reversal of the migration order of E-6259 enantiomers in the dual CD system was also studied. Furthermore, the addition of DM-beta-CD to the BGE introduced a new chemoselectivity in the system that allowed E-6259 to be separated from the structurally similar compound E-6036.  相似文献   

2.
A new and accurate HPLC method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral mobile phase additive (CMPA) was developed and validated for the determination of R-(+)pantoprazole in S-(-)pantoprazole. The influences of type and concentration of CD, ACN content and buffer pH of mobile phase on the resolution and retention of enantiomers were investigated. A baseline resolution of pantoprazole enantiomers was achieved on a Spherigel C18 column (150 mm x 4.6 mm, 5 microm) using ACN and 10 mM phosphate buffer (pH 2.5) containing 10 mM SBE-beta-CD (15:85 v/v) as mobile phase with a flow rate of 0.9 mL/min at 20 degrees C. The detection wavelength was set at 290 nm. The method was extensively validated in terms of accuracy, precision and linearity according to the International Conference on Harmonisation (ICH) guidelines and proved to be robust. The LOD and LOQ for R-(+)pantoprazole were 0.2 and 0.5 microg/mL, respectively, with 5 microL injection volume. A good linear relationship was obtained in the concentration range of 0.5-6.0 microg/mL with r(2) >0.999 for R-(+)pantoprazole. The percentage recovery of the R-(+)pantoprazole ranged from 92.1 to 101.2 in bulk drug of S-(-)pantoprazole. The method is capable of determining a minimum limit of 0.05% w/w of R-enantiomer in S-(-)pantoprazole bulk samples.  相似文献   

3.
A simple and new isocratic normal phase chiral HPLC method has been developed for the determination of enantiomeric purity of pemetrexed disodium (l-enantiomer) in bulk drugs with a short run time of about 20 min. Chromatographic separation of l and d-enantiomers of pemetrexed disodium was achieved on an amylose based chiral stationary phase using a mobile phase consists of hexane, ethanol and trifluoro acetic acid. The resolution between the enantiomers was found to be more than 2.0. The system precision and method precision were found to be within 5% RSD for the distomer (d-enantiomer) at its specification level (i.e. not more than 1.0% w/w). The limit of detection and limit of quantification of distomer were 1.6 and 5 μg mL−1, respectively for 10 μL injection volume. The percentage recovery of distomer was ranged from 90.6 to 105.7 in bulk drug samples. The test solution was found to be stable in the diluent for 48 h. The method was found to be specific for the enantiomers of pemetrexed disodium and can be conveniently used for the quantification of undesired d-enantiomer present in the bulk drug samples of pemetrexed disodium.  相似文献   

4.
A method for the separation of enantiomers of leucine and phenylalanine benzothiazole derivatives as potential antimicrobial agents was developed using capillary zone electrophoresis with a dual cyclodextrin (CD) system. The best resolution of enantiomers was achieved in 100 mmol/L phosphate background electrolyte (pH 3.5) with the dual CD system consisting of 10 mmol/L of β‐CD with 10 mmol/L of 2‐hydroxypropyl‐β‐cyclodextrin for leucine derivative and 10 mmol/L of 2‐hydroxypropyl‐γ‐cyclodextrin for phenylalanine derivative, respectively. Under the optimal conditions, the highest enantioresolution of 1.25 was achieved in a noncoated‐fused silica capillary at 17°C and 24 kV applied voltage.  相似文献   

5.
Three charged substituted beta-cyclodextrins (beta-CDs), sulfobutylether-beta-(SBE-beta-CD), degree of substitution (DS) 4 and 7), and sulfated-beta-(S-beta-CD) cyclodextrins, were compared as chiral additives in capillary electrophoresis for the enantiomeric separation of basic spirobenzopyran derivatives (pKa 9.9) which differ from each other by an N-alkyl group. The number of sulfobutylether groups attached to the cyclodextrin moiety significantly influences the enantioseparation of the basic drugs. SBE-beta-CD (DS 7) which is more strongly bound to cationic analyte than SBE-beta-CD (DS 4.6), requires smaller concentrations to achieve the same resolution. Besides, better enantioresolutions were obtained with S-beta-CD rather than with SBE-beta-CDs though higher concentrations are required, which led to high current values. However, both pairs of enantiomers cannot be resolved using S-beta-CD while SBE-beta-CDs make it possible to resolve simultaneous enantioseparation of such solutes slightly differing in hydrophobicity. This supports the hypothesis that hydrophobic interactions (outside of the CD cavity) between the butyl group attached to SBE-beta-CD and the N-alkyl group of spirobenzopyran play a role in the enantioseparation. On the other hand, the sulfate group of S-beta-CD was directly attached to the CD moiety which means that the S-beta-CD-drug complexation mechanism arises through the combination of electrostatic and hydrophobic (inside the CD cavity) interactions. Finally, enantiomers of spirobenzopyran drugs were satisfactorily resolved by CE using a 20 mg/mL S-beta-CD concentration (resolution 4.0), 7 mg/mL SBE-beta-CD DS 4 (resolution 1.3), or 5 mg/mL SBE-beta-CD DS 7 (resolution 3.3) added to the phosphate buffer (pH 2.6, 50 mM ionic strength).  相似文献   

6.
Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic CDs were screened at pH 4 and 7 in the preliminary analysis. Sulfobutyl‐ether‐β‐CD with a degree of substitution of 6.5 and 10 at neutral pH proved to be the most suitable chiral selector for both compounds. Various dual CD systems were also compared, and the possible mechanisms of enantiomer separation were investigated. A dual selector system containing sulfobutyl‐ether‐β‐CD degree of substitution 6.5 and native γ‐CD proved to be the most adequate system for the separations. Method optimization was carried out using an experimental design approach, performing an initial fractional factorial screening design, followed by a central composite design to establish the optimal analytical conditions. The optimized methods (25 mM phosphate buffer, pH 7, 10 mM sulfobutyl‐ether‐β‐CD/20 mM γ‐CD, +20 kV voltage; 17°C temperature; 50 mbar/3 s injection, detection at 210 nm for lansoprazole; 25 mM phosphate buffer, pH 7, 15 mM sulfobutyl‐ether‐β‐CD/30 mM γ‐CD, +20 kV voltage; 18°C temperature; 50 mbar/3 s injection, detection at 210 nm for rabeprazole) provided baseline separation for lansoprazole (Rs = 2.91) and rabeprazole (Rs = 2.53) enantiomers with favorable migration order (in both cases the S‐enantiomers migrates first). The optimized methods were validated according to current guidelines and proved to be reliable, linear, precise, and accurate for the determination of 0.15% distomer as chiral impurity in dexlansoprazole and dexrabeprazole samples.  相似文献   

7.
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic potential analgesic drug diastereoisomer candidates 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[(2'-methoxycarbonyl-2'-phenylc yclopropyl)methyl]-2,6-methano-3-benzazocin-8-ol (MPCB) and 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[[2'-methoxycarbonyl-2'(4-chloroph enyl)cyclopropyl]methyl]-2,6-methano-3-benzazocin-8-ol (CCB) was achieved. Among the cyclodextrins tested (hydroxypropyl-, carboxymethyl- and sulfobutyl-beta-cyclodextrin (HP-beta-CD, CM-beta-CD and SBE-beta-CD)) SBE-beta-CD was found to be the most effective complexing agent, allowing good optical isomer separation. Resolution was also influenced by the CD concentration, pH of the buffer and presence of organic modifier in the background electrolyte. The optimum experimental conditions for the separation of studied analgesic drugs were found using 25 mM borate buffer at pH 9 containing 40 mM of SBE-beta-CD and 20% v/v of methanol. Using the above-mentioned background electrolyte, it was also possible to separate, in the same run, the enantiomers of normetazocine (NMZ) as well as the optical isomers of (+/-)-cis-2-chloromethyl-1-phenyl cyclopropancarboxylic acid methyl ester (PCE) or (+/-)-cis-2-chloromethyl-1-(4-chlorophenyl)cyclopropancarboxylic acid methyl ester (CPCE) reagents used in the synthesis of the studied analgesic drugs).  相似文献   

8.
A capillary electrophoresis method with ultraviolet (UV) detection was developed and optimized for the enantiomer separation of norepinephrine (NE), epinephrine (EP) and isoprenaline (IP) using dual cyclodextrins (CDs) of 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis (2,6-di-o-methyl)-beta-CD (DM-beta-CD) as chiral selectors. Optimal separation was obtained using a running buffer of 50mM phosphate containing 30mM HP-beta-CD and 5mM DM-beta-CD at pH 2.90 and a field strength of 20kV in 45cmx75mum (40cm effective length) uncoated capillary. The UV absorbance detection was set at 205nm. A 0.1% (w/w) polyethylene glycol or 0.1% (v/v) acetonitrile was used to enhance the detection sensitivity. There was a wide and excellent linear calibration graph for each enantiomer in the range 1.0x10(-3) to 1.0x10(-6)M and the detection limit (S/N=3) was found from 8.5x10(-7) to 9.5x10(-7)M. The method has been applied for the determination of isoprenaline in isoprenaline hydrochloride aerosol and to the analysis of serum samples. The recoveries of NE and EP in serum and IP in drug were ranged from 90 to 110%. The relative standard deviations of all the analyte peaks were less than 2.8% for migration time and less than 4.8% for peak area.  相似文献   

9.
The enantioselectivity of heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl-beta-CD) toward racemic filbertone (E-5-methyl-hep-2-en-4-one) was studied by performing the chiral separation on a capillary column, a thick-film wide-bore column and a semipreparative column. The semipreparative enantioseparation of filbertone was achieved at 80 degrees C by using a packed column providing (R)- and (S)-enantiomers of filbertone with ee 90 and 96%, respectively. The isolated enantiomers (approximately 250 microg each, ee = 90-96%) may be used for studies on the relationship of chirality and biological activity by olfactory screening and toxicological studies.  相似文献   

10.
Lin CE  Lin SL  Cheng HT  Fang IJ  Kuo CM  Liu YC 《Electrophoresis》2005,26(21):4187-4196
Migration behavior and enantioseparation of racemic hydrobenzoin and structurally related compounds, including benzoin and benzoin methyl ether, in CZE with a dual CD system consisting of heptakis-(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) and beta-CD as chiral selectors in the presence and absence of borate complexation at pH 9.0 were investigated. The results indicate that enantioseparation of hydrobenzoin is mainly governed by CD complexation of hydrobenzoin-borate complexes with SI-S-beta-CD when SI-S-beta-CD concentration is relatively high. Whereas CD complexation of hydrobenzoin-borate complexes with beta-CD plays a significant role in enantioseparation when SI-S-beta-CD concentration is comparatively low. The (S,S)-enantiomer of the hydrobenzoin-borate complex was found to interact more strongly than the corresponding (R,R)-enantiomer with both SI-S-beta-CD and beta-CD. These two types of CD show the same chiral recognition pattern, but they exhibit opposite effects on the mobility of the enantiomers of hydrobenzoin-borate complexes. Enantiomer migration reversal of hydrobenzoin occurred in the presence of borate complexation when varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. Binding constants of the enantiomers of benzoin-related compounds to beta-CD and those of hydrobenzoin-borate complexes to SI-beta-CD were evaluated; the mobility contributions of all complex species to the effective mobility of the enantiomers of hydrobenzoin as a function of beta-CD concentration in a borate buffer were analyzed. In addition, comparative studies on the enantioseparation of benzoin-related compounds with SI-S-beta-CD and with randomly sulfate-substituted beta-CD were made.  相似文献   

11.
A previously developed capillary electrophoresis method for the simultaneous separation and enantioseparation of thalidomide (TD) and its hydroxylated metabolites was extended to one additional biotransformation product. The dual chiral selector system using native beta-cyclodextrin (beta-CD) and the negatively charged sulfobutyl ether-beta-CD (SBE-beta-CD) was slightly modified up to a concentration of 12 mg/mL running buffer of each CD. The carrier mode in which these buffer additives transport the neutral compounds to the detector as well as the use of a polyacrylamide-coated capillary were necessary to achieve reproducible enantioseparations of all eight analytes. The optimized method was applied to the analysis of the in vitro biotransformation of TD by rat liver microsomes. The S-enantiomer undergoes metabolism preferentially by hydroxylation in the phthalimide ring, whereas R-(+)-TD is mainly transformed to diastereomeric 5'-hydroxythalidomide (5'-OH-TD) pairs. The chiral capillary electrophoresis of incubation samples of TD enantiomers in combination with X-ray diffraction data allowed us to determine the absolute configuration of all metabolites and furthermore to follow the enantio- and stereoselective effects of metabolism in detail.  相似文献   

12.
A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurityby capillary electrophoresis with highly sulfated β-cyclodextrin(HS-β-CD)as the chiral selector is described.Ingeneral,enantioseparation of basic chiral compounds is carried out in acidic condition(pH 2.5)to prevent analytesfrom adsorption on the capillary wall.However,in the case of rivastigmine,the detection sensitivity was too limitedto determine the optical impurity of S-rivastigmine lower than 1% when buffer pH was 2.5.It was found that thedetection sensitivity was improved 1.6 times just by raising the buffer pH value from 2.5 to 5.8.The poor columnefficiency due to the adsorption of the analytes on the capillary wall was resolved by using dynamical coating of thecapillary wall with the linear polyacrylamide solution.The experirnental parameters such as the concentration ofHS-β-CD,buffer pH and buffer ionic strength were optimized,respectively.The method was validated in terms ofrepeatability,linearity,limit of detection(LOD)and limit of quantitation(LOQ).Using the present method,the op-tical purity of nonracemic rivastigmine with the enantiomeric excess(ee)value of 99.14% was determined.  相似文献   

13.
Separation of etodolac enantiomers, which exhibit different biological activity and pharmacokinetic profiles, has been achieved using the randomly substituted (2-hydroxy)propyl-beta-cyclodextrin (HP-beta-CD) as chiral selector in capillary electrophoresis. The selection of this CD was made after screening of different CD derivatives of neutral and anionic nature. The effect on the enantioresolution of the buffer concentration and of the degree of substitution (DS) and concentration of the CD as well as of instrumental parameters, such as the capillary temperature and the separation voltage, were studied. The highest resolution of etodolac enantiomers was around 2.5 using 100 mM phosphate buffer (pH 7.0) with 20 mM HP-beta-CD (DS approximately 4.2) and UV detection at 225 (10) nm with a reference wavelength at 360 (50) nm. Validation of the chiral method in terms of selectivity, linearity, precision (instrumental repeatability, method repeatability, intermediate precision), and the limits of detection and quantitation allowed to evaluate its quality to the analysis of etodolac enantiomers in different pharmaceutical preparations containing racemic etodolac.  相似文献   

14.
Cyclodextrin (CD) derivatives are the most efficient and frequently used chiral selectors (CSs) in capillary electrophoresis (CE). There are situations when the use of a single CD as CS is not enough to obtain efficient chiral discrimination of the enantiomers; in these cases, sometimes this problem can be resolved using a dual CD system. The use of dual CD systems can often dramatically enhance enantioseparation selectivity and can be applied for the separation of many analytes of pharmaceutical interest for which enantioseparation by CE with another CS systems can be problematic. Usually in a dual CD system an anionic CD is used together with a neutral one, but there are situations when the use of a cationic CD with a neutral one or the use of two neutral CDs or even two ionized CDs can be an efficient solution. In the current review we present general aspects of the use of dual CD systems in the analysis of pharmaceutical substances. Several examples of applications of the use of dual CD systems in the analysis of pharmaceuticals are selected and discussed. Theoretical aspects regarding the separation of enantiomers through simultaneous interaction with the two CSs are also explained. Finally, advantages, disadvantages, potential and new direction in this chiral analysis field are highlighted.  相似文献   

15.
A CE method employing a dual system of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) and ionic liquids (ILs) has been developed for the simultaneous enantioseparation of four azole antifungals for the first time. In this study, three different types of ILs were employed as modifiers and among them dodecyl trimethyl ammonium chloride was found to be the most effective. The effects of the concentration, cations, and anions of ILs on the enantioseparation were investigated. With the developed dual system, all the enantiomers were well separated in resolutions of 3.8, 3.5, 2.8, and 2.5 for miconazole, econazole, ketoconazole, and itraconazole, respectively. The interactions between dodecyl trimethyl ammonium chloride and HP‐β‐CD were also studied using a neutral polyacrylamide coated capillary and 1H NMR spectroscopy to further explore the synergistic effect involved. It was found that ILs improved the enantioseparation not only by changing the EOF, but also by interactions with HP‐β‐CD that could change its ability of forming inclusion complex with the enantiomers.  相似文献   

16.
Simple equations and theoretical models, related to enantioselectivity (kappa) and C, have been developed for prediction of electrophoretic mobility difference (Deltamu) and separation selectivity (alpha) for enantiomers in CE using dual CDs, where alpha and kappa are defined as the ratio of mu and the ratio of binding constant (K) for enantiomers to each CD, respectively, C the CD concentration, and the average K for enantiomers and each CD. Experiments were carried out using dual CDs as beta-CD and dimethyl-beta-cyclodextrin (DM-beta-CD) and test analytes as five pairs of amphetamine drug enantiomers. A change in observed Deltamu and alpha of enantiomers in dual CDs was found to be in excellent agreement with the theoretical models. For example, in comparison with single CD1, dual CDs can enhance Deltamu and alpha up to the maximum value when enantiomers migrate with the same order in CD1 and CD2, and have the value of rho > 1.0, where rho is the enantioselectivity ratio for CD2 to CD1, while worse Deltamu and alpha are obtained for enantiomers with rho < 1.0.  相似文献   

17.
One of the many attempts to stop the danger of tobacco smoking is the development of an anti‐smoking vaccine using nicotine butyric acid (NBA) linked to a carrier protein to produce anti‐nicotine antibodies. NBA is a chiral molecule and there is a need to obtain a high degree of enantiomeric purity. The aim of this work is to develop a novel method for the enantioseparation of NBA and the determination of trace amounts of enantiomeric impurity required by regulatory authorities. This was achieved successfully using high‐performance capillary electrophoresis combined with label‐free intrinsic imaging as new imaging technology. A 50 μm id fused‐silica capillary was used with UV detection at λ214 nm and label‐free intrinsic imaging. The background electrolyte consisted of highly sulphated β‐cyclodextrin 10% m/V as a chiral selector in 75 mM phosphoric acid–triethylamine at pH 7.0. Baseline separation and detection of 0.1% and possibly less of the unwanted impurity (R‐enantiomer) were achieved. Also, the detection limits were calculated for both enantiomers. The use of label‐free intrinsic imaging has improved the sensitivity, enabling us to detect trace amounts of enantiomeric impurities.  相似文献   

18.
Cyclodextrin-modified electrokinetic chromatography (CD-EKC) was investigated for the separation of 12 monomethylbenz[a]anthracene (MBA) isomers. Combined use of a polymeric surfactant, poly(sodium 10-undecenyl sulfate) (poly-SUS), with various types of neutral cyclodextrins (CDs) [beta-CD, gamma-CD, dimethyl-beta-CD (DM-beta-CD), trimethyl-beta-CD (TM-beta-CD) and hydroxypropyl-beta-CD (HP-beta-CD)] were successful in CD-EKC separation of the MBA isomers. Baseline resolution of 10 of the 12 isomers, except for 9-MBA and 2-MBA, was achieved with gamma-CD at pH 9.75. The beta-CD, gamma-CD, and beta-CD derivatives (DM-beta-CD, TM-beta-CD, HP-beta-CD) were found to have different resolution and selectivity. Additionally, the tR/t0 values of isomers were found to be dependent on the type and concentration of the CD additives. In general, tR/t0 values of MBA isomers decrease with an increase in the concentration of beta-CD derivatives, whereas the reversed was true when the concentrations of native beta-CD and gamma-CD were varied. The combination of 5 mM gamma-CD, 0.5% (w/v) poly-SUS, 35% (v/v) acetonitrile at a pH of 9.75 provided the best selectivity and resolution of the MBA isomers with a separation time of 110 min. However, the use of 30 mM DM-beta-CD under similar EKC conditions resulted in much faster separation (ca. 16 min) of 10 MBA isomers.  相似文献   

19.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

20.
The interaction of three cyclodextrins (CDs), viz. beta-CD, heptakis (2,6-di-O-methyl)-beta-CD (DM-beta-CD), and 2-hydroxypropyl-beta-CD (HP-beta-CD), with cholesterol was investigated using molecular dynamics (MD) simulations. The free energy along the reaction pathway delineating the inclusion of cholesterol into each CD was computed using the adaptive biasing force method. The association constant and the corresponding association free energy were derived by integrating the potential of mean force (PMF) over a representative ordering parameter. The results show that the free energy profiles possess two local minima corresponding to roughly equally probable binding modes. Among the three CDs, DM-beta-CD exhibits the highest propensity to associate with cholesterol. Ranking for binding cholesterol, viz. DM-beta-CD > HP-beta-CD > beta-CD, agrees nicely with experiment. Partitioning of the PMF into free energy components illuminates that entering of cholesterol into the CD cavity is driven mainly by electrostatic interactions, whereas deeper inclusion results from van der Waals forces and solvation effects. Additional MD simulations were performed to investigate the structural stability of the host-guest complexes near the free energy minima. The present results demonstrate that association of cholesterol and CDs follows two possible binding modes. Although the latter are thermodynamically favorable for all CDs, one of the two inclusion complexes appears to be preferred kinetically in the case of DM-beta-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号