首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The mass spectral properties of glucuronides of the 9- and 10-hydroxylated metabolites of RT-3003 (Vintoperol; (-)-1beta-ethyl-1alpha-hydroxymethyl-1,2,3,4,6,7, 12balpha-octahydroindolo[2,3-a]quinolizine), which were fractionated by high-performance liquid chromatography with fluorescence detection, were investigated using the positive ion electrospray ionization mode. These glucuronides showed predominantly the protonated molecular ion ([M + H](+) ion), and the [M + H](+) ion provided a characteristic product ion spectrum in which abundant ions were obtained at m/z 301, 160 and 142. The first ion, corresponding to the [aglycone + H](+) ion, was produced by neutral loss of the glucuronic acid moiety from the [M + H](+) ion. The product ion spectrum of the [M + H](+) ion of hydroxy-RT-3003 revealed a number of ions common to the glucuronide spectra, suggesting that other two ions observed most likely represent fragmentation of hydroxy-RT-3003. In turn, these glucuronides were positional isomers with respect to the binding site of glucuronic acid. The structures of the isomer pairs were discriminated by the presence of the ion of m/z 318 or 336 in the product ion spectrum. These ions were produced by fission of the C-ring, the same as for the formation of the ions of m/z 160 and 142, as were observed in the product ion spectrum from the [M + H](+) ion of hydroxy-RT-3003. For the formation of these ions, an unusual fragmentation process was proposed, and these ion structures were supported by evidence from the accurate mass measurement data. Additionally, in the sulfates of hydroxylated metabolites, a similar product ion corresponding to the ion of m/z 336 found in the phenolic glucuronides was observed, and was applied for identification of the sulfate metabolites.  相似文献   

2.
Ceramides are important intracellular second messengers that play a role in the regulation of cell growth, differentiation and programmed cell death. Analysis of these second messengers requires sensitive and specific analytical method to detect individual ceramide species and to differentiate between them. Eight molecular species of ceramide were identified from the marine sponge Haliclona cribricutis using electrospray ionization tandem mass spectrometry (ESI-MS/MS). From this marine sponge N-hencicosanoyl (N21:0) to N-hexasanoyl (N26:0) Octadecasphing-4 (E)-enine have been reported for the first time. The ESI-MS spectra gave several strong protonated molecular ion [M+H](+) with the corresponding bis (2-ethyl hexyl) phthalate adduct [M+H+DHEP](+). The collision induced dissociation (CID) on ceramides at m/z 622.7337, 636.7645, 650.7789, 664.7925 and 678.8130 conducted at low-collision energy produced well characteristic product ions at m/z 252.31, 264.32, 278.33, 282.33 and 296 .35 for d18:1 sphingosine regardless of the length of the fatty chain. The MS/MS of the Phthalate adduct [M+H+DHEP](+) at m/z 1013.1820, 1027.1971, 1041.2176, 1055.2394 and 1069.2573 also yielded characterizing product ions for sphingosine and confirmed the molecular ion at m/z 391 for bis (2-ethyl hexyl) phthalate. The major ions in the [M+H](+) and [M+H+DHEP](+) were due to neutral loss of [M+H-H(2)O](+) and [M+H(H(2)O)(2)](+).  相似文献   

3.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

4.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

5.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

6.
A rapid and stable high-performance liquid chromatography-diode array detection (HPLC-DAD) and a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS) method were developed and validated for the separation, determination, and identification of eight pairs of diastereoisomers of podophyllotoxin and its esters at C-2 position. The separation was carried out on BDS Hypersil C18 column with CH3OH-CH3CN-H2O as the mobile phase in a gradient program. Interestingly, every 2alpha-H compound migrated before its corresponding 2beta-H epimer under optimum conditions. Also, the [M+NH(4)](+) of all eight pairs of compounds was observed in the HPLC-ESI/MS spectra. The characteristic elimination from the precursor protonated ions and the product ions at m/z 397, 313, 282, and 229 were the common diagnostic masses. The ion ratios of relative abundance [M-ROH+H](+) (ion 397) to [M+NH(4)](+), [A+H](+) (ion 313) to [M-ROH+H](+), and [M-ROH-ArH+H](+) (ion 229) to [M-ROH+H](+) in the ESI/MS/MS spectra of each pair of diastereoisomers of the lignans specifically exhibited a stereochemical effect. Thus, by using identical sample solutions and chromatographic conditions (including the same columns and gradient programs), the combination of DAD and MS/MS data permitted the separation and identification of the eight pairs of diastereoisomers of the podophyllotoxin and its esters in the mixture. The method could be used in rapidly identifying the purity and monitoring of the epimerization of 2-H of podophyllotoxin and its analogues from natural products, chemical reactions, and pharmaceutical metabolism.  相似文献   

7.
Fragmentation mechanisms of protonated chalcone and its derivatives with different functional groups were investigated by atmospheric pressure chemical ionization with tandem mass spectrometry (MS/MS). The major fragmentation pathways were loss of the phenyl group from the A or B ring, combined with loss of CO. Losses of H(2)O and CO from the precursor ions of [M+H](+) are proposed to occur via rearrangements. Elimination of water from protonated chalcones was observed in all the title compounds to yield a stable ion but it was difficult to obtain skeletal fragmentation of a precursor ion. Loss of CO was found in the MS/MS spectra of all the compounds except the nitro-substituted chalcones. When the [M+H--CO](+) ion was fragmented in the MS/MS experiments, there were distinctive losses of 15 and 28 Da, as the methyl radical and ethylene, respectively. The ion at m/z 130, found only in the nitro-substituted chalcones, was assigned as C(9)H(6)O by Fourier transform ion cyclotron resonance (FTICR)-MS/MS; m/z 130 is a common fragment ion in the electron ionization (EI) spectra of chalcones. In order to more easily distinguish the constitutional isomers of these chalcones, breakdown curves were produced and these provided strong support in this study.  相似文献   

8.
N,N'-Dialkylaminoethanols are the hydrolyzed products or precursors of chemical warfare agents such as V-agents and nitrogen mustards, and they are prone to undergo oxidation in environmental matrices or during decontamination processes. Consequently, screening of the oxidized products of aminoethanols in aqueous samples is an important task in the verification of chemical weapons convention-related chemicals. Here we report the successful characterization of the N-oxides of N,N'-dialkylaminoethanols, alkyl diethanolamines, and triethanolamine using positive ion electrospray ionization mass spectrometry. The collision-induced dissociation (CID) spectra of the [M+H](+) and [M+Na](+) ions show diagnostic product ions that enable the unambiguous identification of the studied N-oxides, including those of isomeric compounds. The proposed fragmentation pathways are supported by high-resolution mass spectrometry data and product/precursor ion spectra. The CID spectra of [M+H](+) ions included [MH-CH(4)O(2)](+) as the key product ion, in addition to a distinctive alkene loss that allowed us to recognize the alkyl group attached to the nitrogen. The [M+Na](+) ions show characteristic product ions due to the loss of groups (R) attached to nitrogen either as a radical (R) or as a molecule [R+H or (R-H)] after hydrogen migration.  相似文献   

9.
While developing a liquid chromatography/tandem mass spectrometry method for the analysis of the flavonoid quercitin, it was observed that quercetin (3,3',4',5,7-pentahydroxyflavone) exhibited clustering in both the positive and negative ion mode. Two series of positive ion clusters were observed; the first series corresponds to singly charged [2M + Na](+) at m/z 627.2 to [13M + Na](+) at m/z 3947.5, while the second series corresponds to doubly charged [7M + 2Na](2+) at m/z 1080.4 to [25M + 2Na](2+) at m/z 3798.5. In the negative ion mode, the behavior of quercetin parallels that of apigenin (4',5,7-trihydroxyflavone) in that [M + NO(3)](-), [2M + NO(3)](-), and [3M + NO(3)](-) were observed at m/z 364.1, 666.0, and 968.9, respectively; in addition, quercitin clusters with chloride ions ([2M + Cl](-) at m/z 638.9 and [3M + Cl](-) at m/z 940. 9) were observed. The results of tandem mass spectrometric examination of several cluster ions are reported.  相似文献   

10.
Ionization efficiencies and fragmentation patterns of cyanoacrylate ultraviolet (UV) absorbers, Uvinul 3035 and Uvinul 3039, were studied using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS). Solvent effect on the ionization efficiencies was investigated using methanol, ethanol, acetone, and chloroform. The fragmentation patterns were also investigated by varying the fragmentor voltage. Solvated ions, the [M+H + solvent](+) of methanol, ethanol, and acetone were detected, but the [M+H + chloroform](+) ion was not observed. For Uvinul 3039 in chloroform, the [M+CHCl(2)](+) ion was detected instead of the solvated ion. Relative abundance of the solvated ion was decreased by increasing the fragmentor voltage. Fragment ions of m/z 250, 232, and 204 were detected and their abundance increased with an increase in the fragmentor voltage. The m/z 250 ion can be accounted for by a McLafferty rearrangement. The fragment ions of m/z 232 and 204 were formed not only by subsequent fragmentations of the m/z 250 ion, but also by ion-molecule reactions of solvent ion and neutral analyte.  相似文献   

11.
A sensitive microElution solid-phase extraction (SPE) liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of M+4 stable isotope labeled cortisone and cortisol in human plasma. In this method, M+4 cortisone and M+4 cortisol were extracted from 0.3 mL of human plasma samples using a Waters Oasis HLB 96-well microElution SPE plate using 70 microL methanol as the elution solvent, and chromatographed on a Waters Symmetry C18 column (4.6 x 50 mm, 3.5 microm). M+9 cortisone and M+9 cortisol were used as the internal standards. A PE Sciex API 4000 tandem mass spectrometer interfaced with the liquid chromatograph via a turboionspray source was used for mass analysis and detection. The selected reaction monitoring (SRM) of precursor --> product ion transitions were monitored at m/z 365.2 [M+H](+) --> 167.0 and at m/z 367.3 [M+H](+) --> 125.1 for M+4 cortisone and M+4 cortisol, respectively. The lower limit of quantitation was 0.1 ng mL(-1) and the linear calibration range was from 0.1 to 100 ng mL(-1) for both analytes. This method demonstrated to be very reproducible and reliable.  相似文献   

12.
An important aspect in drug discovery is the early structural identification of the metabolites of potential new drugs. This gives information on the metabolically labile points in the molecules under investigation, suggesting structural modifications to improve their metabolic stability, and allowing an early safety assessment via the identification of metabolic activation products. From an analytical point of view, metabolite identification still remains a challenging task, especially for in vivo samples, in which they occur at trace levels together with high amounts of endogenous compounds. Here we describe a method, based on LC-ion trap tandem MS, for the rapid in vivo metabolite identification. It is based on the automatic, data-dependent acquisition of multiple product ion MS/MS scans, followed by a postacquisition search, within the entire MS/MS data set obtained, for specific neutral losses or marker ions in the tandem mass spectra of parent molecule and putative metabolites. One advantage of the method is speed, since it requires minimum sample preparation and all the necessary data can be obtained in one chromatographic run. In addition, it is highly sensitive and selective, allowing detection of trace metabolites even in the presence of a complex matrix. As an example of application, we present the studies of the in vivo metabolism of the compound MEN 15916 (1). The method allowed identification of monohydroxy ([M + H](+) = m/z 655), dihydroxy ([M + H](+) = m/z 671), and trihydroxy ([M + H](+) = m/z 687) metabolites, as well as some unexpected biotransformation products such as a carboxylic acid ([M + H](+) = m/z 669), a N-dealkylated metabolite ([M + H](+) = m/z 541), and its hydroxy-analog ([M + H](+) = m/z 557).  相似文献   

13.
The ion/molecule reactions of nine monosubstituted naphthalene compounds in chemical ionization mass spectrometry (CI-MS) were studied using tetrahydrofuran (THF) as CI reagent. Proton affinity factors, substituent effects and the preferred site of adduct ion attachment were examined. Good correlation was observed between proton affinity and the formation of [M](+*) and [M+H](+) ions. The influence of substituents on protonation and site-specific adduct [M+13](+) and [M+41](+) ion formation is also observed, with the cyano substituent showing the most stable [M+41](+) ion. Collision-activated dissociation experiments were used to characterize the variety of adducts formed under CI conditions, and provided insight into product ion structures and mechanisms of dissociation and condensation during CI-MS/MS.  相似文献   

14.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

15.
We applied low-energy collisionally activated dissociation (CAD) tandem quadrupole mass spectrometry to study the fragmentation pathways of the [M + H](+) and [M + Li](+) ions of phosphatidylcholine (PC), generated by electrospray ionization (ESI). It is revealed that the fragmentation pathways leading to loss of the polar head group and of the fatty acid substituents do not involve the hydrogens attached to the glycerol backbone as previously reported. The pathway for formation of the major ion of m/z 184 by loss of the polar head group from the [M + H](+) precursor of a diacyl PC involves the participation of the alpha-hydrogen of the fatty acyl substituents, whereas the H(+) participates in the loss of fatty acid moieties. The alpha-hydrogens of the fatty acid substituents also participate in the major fragmentation processes, including formation of [M + Li-R(x)CO(2)H](+) and [M + Li-59-R(x)CO(2)H](+) ions for the [M + Li](+) ions of diacyl PCs, when subjected to low-energy CAD. These fragmentation processes are deterred by substitution of the fatty acyl moieties with alkyl, alkenyl, or hydroxyl groups and consequentially, result in a distinct product-ion spectrum for various PC, including diacyl-, plasmanyl- plasmenyl-, and lyso-PC isomers. The alpha-hydrogens of the fatty acyl substituents at sn-2 are more labile than those at sn-1. This is reflected by the preferential loss of the R(1)CO(2)H over the R(2)CO(2)H observed for the [M + Li](+) ions of diacyl PCs. The spectrum features resulting from the preferential losses permit identification and assignment of the fatty acid moieties in the glycerol backbone. The new fragmentation pathways established by tandem and source CAD tandem mass spectra of various PC molecules, including deuterium-labeling analogs, were proposed. These pathways would clarify the mechanisms underlying the ion formations that lead to the structural characterization of PC molecules.  相似文献   

16.
Ethylenediamine (EDA) was used as a novel liquid chemical reagent to probe hydrogen bonding and host-guest interactions with crown ether derivatives in an ion trap mass spectrometer (ITMS). Selective ion/molecule reaction product ions were generated by reactions of EDA with oxygenated and aza-crown ethers. For the oxygenated crown ethers, glycols and dimethylglycols, ion/molecule reactions led to the formation of the protonated molecules ([M+H](+)) and adduct ions including [M+30](+), [M+44](+) and [M+61](+). The aza-crown ethers produced [M+H](+), [M+13](+) and [M+27](+) ions. Collisionally activated dissociation (CAD) experiments were applied to probe the binding strength of these ion/molecule reaction products. CAD results indicated that all these hydrogen-bonding complexes are weakly bound except for the [M+44](+) ion of 18-crown-6, since all the complexes dissociate to the protonated polyether and/or protonated EDA. Fragmentation of the [M+H](+) ions under CAD conditions indicates the extensive covalent bond cleavage of the protonated crown ether skeleton.  相似文献   

17.
Peaks for [M + H](+) are not observed when electrospray ionization mass spectra of tetrahydropyranyl (THP) ethers are recorded under acidic conditions. However, gaseous [M + H](+) ions can be generated from ammonium adducts of THP ethers of primary alcohols by in-source fragmentation. The product ion spectra of these proton adducts show two significant peaks at m/z 85 and 103. Tandem mass spectrometric data obtained from appropriately deuteriated derivatives and ab initio calculations indicate that the m/z 85 ion originates from more than one mechanism and represents two structurally different species. A charge-directed E1-elimination mechanism or an inductive cleavage mechanism can produce the 3,4,5,6-tetrahydropyrylium ion as one of the structures for the m/z 85 ion, whereas a charge-remote process with ring contraction can generate the 5-methyl-3,4-dihydro-2H-furylium ion as the other structure. A comparison of the relative abundances of product ions from different isotopologues showed that the charge-remote process is the preferred mechanism. This is congruent with the ab initio calculations, which showed that the dihydrofurylium ion bears the lowest energy structure. The less abundant m/z 103 ion, which represents a protonated tetrahydropyran-2-ol, is formed by a charge-remote process via a proton transfer from the alkyl substituent. This process involves the formation and rearrangement of a carbenium ion in close association with a hydroxypentanal molecule. A proton transfer from the carbenium ion to the aldehyde is followed by elimination of an alkene.  相似文献   

18.
This study sought to determine the primary components (isoquinoline alkaloids, diterpenoids and steroids) in crude extracts of the Chinese herb Jin-Guo-Lan, prepared from the roots of Tinospora sagittata and T. capillipes, by liquid chromatography/electrospray ionization multistage mass spectrometry coupled with diode-array detection (LC-DAD/ESI-MS(n)). After separation on a reversed-phase C(18) column using gradient elution, positive and negative ESI-MS experiments were performed. In positive ion mode, the three types of compounds showed very different characteristic ions: strong [M](+) or [M+H](+) ions were observed for isoquinoline alkaloids; [M+NH(4)](+) and/or [M+H-CO(2)](+) for diterpenoids; [M+H-nH(2)O](+) (n=1-3) for steroids. These adduct ions and/or fragments were used to deduce the mass and categories of known and unknown components in crude extracts, and their structures were further confirmed by ESI-MS(n) in positive ion mode. Moreover, UV absorption peaks obtained from DAD provided useful functional group information to aid the MS(n)-based identification. As a result, 11 compounds were unambiguously identified by comparing with standard compounds and 13 compounds were tentatively identified or deduced according to their MS(n) data. Two of these compounds (13-hydroxycolumbamine and 13-hydroxyjatrorrhizine) were found to be new compounds and another one (13-hydroxypalmatine) was detected for the first time as a natural product. In addition, a [M-*CH(3)-H(2)O](*+) ion in MS(2) of [M](+) after in-source collision-induced dissociation was used to differentiate positional isomers of protoberberine alkaloids, columbamine and jatrorrhizine. Although the roots of T. sagittata and T. capillipes contain almost identical compounds, the content of the compounds in them is dramatically different, suggesting the necessity for further comparison of the bioactivities of the two species.  相似文献   

19.
A series of six bimetallic oxovanadium complexes (1-6; only one was purified) were investigated by electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) in negative-ion mode. Radical molecular anions [M](.-) were observed in MS mode. Fragmentation patterns of [M](.-) were proposed, and elemental compositions of most of the product ions were confirmed on the basis of the high-resolution ESI-CID-MS/MS spectra. A complicated series of low-abundance product ions similar to electron impact (EI) ionization spectra indicated the radical character of the precursor ions. Fragment ions at m/z 214, 200, and 182 seem to be the characteristic ions of bimetallic oxovanadium complexes. These ions implied the presence of a V-O-V bridge bond, which might contribute to stabilization of the radical. To obtain more information for structural elucidation, three representative bimetallic oxovanadium complexes (1-3) were analyzed further by MS in positive-ion mode. Positive-ion ESI-MS produced adduct ions of [M + H](+), [M + Na](+), and [M + K](+). The fragmentation patterns of [M + Na](+) were different than those of radical molecular anions [M](.-). Relatively simple fragmentation occurred for [M + Na](+), possibly due to even-electron ion character. Negative-ion MS and MS/MS spectra of the hydrolysis product of Complex 1 supported these finding, in particular, the existence of a V-O-V bridge bond.  相似文献   

20.
Di-n-butyl sulfate (DNBS) has been studied by electrospray (ESI) and chemical (CI) ionization mass spectrometry. The use of methanol as solvent in electrospray ionization allows observation of relatively abundant [DNBS + CH(3)OH + H](+) ions (m/z 243) which upon collision dissociate to [DNBS + H](+) ions (m/z 211). In both ESI and CI experiments, it is found that [DNBS + H](+) ions lead to m/z 113 daughter ions. The composition of this m/z 113 fragment ion and its mechanism of formation have been established by high resolution measurements and CID-MIKE experiments. An 'internal substitution' reaction involving an ion-neutral intermediate is proposed to explain the formation of a [C(8)H(17)](+) ion (m/z 113) by loss of a H(2)SO(4) molecule. Finally, a LC/ESI-MS/MS quantification method is proposed in which a detection limit of di-n-butyl sulfate in the ppm range is obtained. It is suggested that the quantification method might be extended to higher dialkyl sulfates. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号