共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The adsorption of H atoms on metal (jellium) surfaces has been investigated using linear response theory within the density functional formalism. The adsorbate is represented initially by a 1S orbital on the H atom, which perturbs the jellium surface and indirectly the adsorbate itself. The interaction energy curves, atomic binding energies, induced dipole moments, chemical shifts associated with the adsorbate, and vibrational excitation energies at the equilibrium internuclear separation have been calculated for a single H atom chemisorbed on metal surfaces. The sum of the atomic binding energy and the ionization potential of the H 1S level may be regarded as the initial state energy in the case of photoemission from the chemisorbed H. The rather satisfactory overall agreement between the theory and the experimental results for binding energies, vibrational excitation energies, and dipole moments suggests that this simple formalism could also have useful applications in more complicated chemisorbed systems. 相似文献
3.
Extensive calculations of the ground state properties of hydrogen chemisorbed on transition metal surfaces are presented. The calculations are performed using the effective medium theory. The results for the chemisorption energies on all the 3d, 4d and 5d metals presented are in good agreement with experiment. The trends along a particular row are shown to be dominated by the degree of filling of the d band. The full adiabatic potential energy surface is presented for a number of experimentally interesting systems, including H/Ni(111), H/Ni(110), H/W(100) and H/W(110). Equilibrium sites, bond lengths, vibrational frequencies and surface diffusion energies are deduced and compared with experiment. Again, agreement is good. The surface and adsorbate parameters determining those observables are discussed. It is shown that a simple canonical relationship exists between the perpendicular vibrational frequency and the metal-hydrogen bond length. This formulation, which is not based on pair potentials, should be useful as a first estimate of bond lengths from measured vibrational data. 相似文献
4.
5.
This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented. 相似文献
6.
We present a theory which describes enhanced Raman scattering from molecules adsorbed on metals. The enhancement is due to the screening fields induced by the optically polarized adsorbate in the presence of the substrate. These fields interact coherently with the applied optical field and the vibrational motion of the adsorbed molecule. The enhancement is shown to be coverage dependent and also rather sensitive to the optical dielectric function of the substrate. Predicted enhancements compare well with experiment. 相似文献
7.
8.
Axel Groß 《Surface science》2012,606(7-8):690-691
This paper provides a perspective on the article "Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study" by Ferrin et al. in this issue. 相似文献
9.
10.
11.
12.
Th. Fauster 《Applied Physics A: Materials Science & Processing》1994,59(5):479-486
An electron in front of a metal surface experiences an attractive force due to the induced image charge. Band gaps in the band structure can prevent a penetration into the metal along certain directions. The Coulomb-like potential supports bound states in front of the surface which correspond to a hydrogen atom in one dimension. These image states can be measured with high resolution by two-photon photoemission. The adsorption of metals modifies the states. If the electrons can penetrate into the metal, quantum-well states can develop corresponding to standing waves in the overlayer. Image states on small islands show the quantization effects due to the lateral localization. The spectroscopy of image states by two-photon photoemission permits the investigation of growth and morphology of deposited metal layers, a well as the illustration of fundamental quantum-mechanical effects. 相似文献
13.
Electron-electron interactions can induce Fermi surface deformations which break the point-group symmetry of the lattice structure of the system. In the vicinity of such a "Pomeranchuk instability" the Fermi surface is easily deformed by anisotropic perturbations, and exhibits enhanced collective fluctuations. We show that critical Fermi surface fluctuations near a d-wave Pomeranchuk instability in two dimensions lead to large anisotropic decay rates for single-particle excitations, which destroy Fermi-liquid behavior over the whole surface except at the Brillouin zone diagonal. 相似文献
14.
15.
A. Gross 《Applied Physics A: Materials Science & Processing》1998,67(6):627-635
Received: 23 March 1998/Accepted: 21 August 1998 相似文献
16.
The emission of freely propagating terahertz (THz) radiation coming from optical rectification at metallic surfaces has been detected and characterized for the first time to the authors' knowledge. The observed THz transients are induced through nonlinear electronic processes at gold and silver surfaces on intense pulsed optical photoexcitation and exhibit a peak electric field of as much as 200 V/cm. This finding opens a qualitatively new way to investigate nonlinear phenomena at metal surfaces and also can be exploited for the development of new THz emitters. 相似文献
17.
18.
L.A. Falkovsky 《物理学进展》2013,62(5):753-789
Previous theoretical treatments of the scattering of conduction electrons at surfaces are reviewed and it is found that a more complete theory is necessary if the effects of surface scattering in transport phenomena are to be adequately understood. The boundary condition for the distribution function is derived and analysed in terms of the angle-dependent scattering probability. The skin effect, cyclotron resonance and the resistance of thin films and wires are considered in detail. 相似文献
19.
Measurements of the positron annihilation-induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot-like Cu nanoparticles embedded in Fe reveal a decrease of the Fe M2,3VV positron annihilation-induced Auger signal intensity and an enhancement of the Cu one for surfaces created by enriching the Cu content of the Fe-Cu alloy. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics at the Fe(1 0 0) surface with quantum-dot-like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Theoretical core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe. 相似文献
20.
Keh-Dong Shiang 《Physics letters. A》1993,180(6):444-452
We propose in this paper a theoretical model to investigate surface self-diffusion of single adatoms on two different low-index planes, closely packed (001) and densely packed (111), of face-centered-cubic rhodium, nickel and copper metal crystals. Two realistic model potentials are applied to describe the interatomic interaction of the adatom-substrate systems. The first model is a Morse-type potential, which involves several empirical fittings of bulk of solid. The second, newly popular, potential was introduced by Sutton and Che, which incorporates many-body effects. With these potentials, conventional molecular dynamics (MD) is employed to obtain trajectories of the atoms. The average squared didplacements are computed for a range of initial kinetic energies, and the surface diffusion constants can be obtained by means of the Einstein relation. The estimated random walk exponential prefactors and activation energies exhibit an Arrhenius behavior, and are compared with previous results. 相似文献