首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineered metalloproteins constitute a flexible new class of analyte-sensitive molecular imaging agents detectable by magnetic resonance imaging (MRI), but their contrast effects are generally weaker than synthetic agents. To augment the proton relaxivity of agents derived from the heme domain of cytochrome P450 BM3 (BM3h), we formed manganese(III)-containing proteins that have higher electron spin than their native ferric iron counterparts. Metal substitution was achieved by coexpressing BM3h variants with the bacterial heme transporter ChuA in Escherichia coli and supplementing the growth medium with Mn3+-protoporphyrin IX. Manganic BM3h variants exhibited up to 2.6-fold higher T1 relaxivities relative to native BM3h at 4.7 T. Application of ChuA-mediated porphyrin substitution to a collection of thermostable chimeric P450 domains resulted in a stable, high-relaxivity BM3h derivative displaying a 63% relaxivity change upon binding of arachidonic acid, a natural ligand for the P450 enzyme and an important component of biological signaling pathways. This work demonstrates that protein-based MRI sensors with robust ligand sensitivity may be created with ease by including metal substitution among the toolkit of methods available to the protein engineer.  相似文献   

2.
We demonstrate that photoexcitation of NAD(P)H at 355 nm using a Nd:YAG laser leads to rapid reduction of the heme domain of the Bacillus megaterium fatty acid hydroxylase flavocytochrome P450 BM3. An aqueous electron derived from photoexcited NAD(P)H is rapidly transferred to the heme domain, enabling the formation of a carbon monoxy complex of the ferrous P450 (FeII-CO) on the microsecond time scale. Using this approach we have determined the limiting rate constant (1770 s-1 for substrate-free heme domain) for formation of the FeII-CO complex. We find no dependence of the observed rate of FeII-CO complex formation on NAD(P)H concentration but demonstrate a hyperbolic dependence on carbon monoxide concentration. The apparent dissociation constant for the complex of carbon monoxide bound noncovalently to the ferric form of the BM3 heme domain (and with NADH as reductant) is 323 microM. Binding of a P450 substrate (N-palmitoylglycine) weakened the complex between carbon monoxide and the ferric BM3 heme domain (Kd increased to 1404 microM) but enhanced the rate of formation of the FeII-CO complex (3036 s-1 for substrate-free heme domain). This study demonstrates the applicability of NAD(P)H photoexcitation as a method for rapid electron delivery to P450 enzymes and provides a new route to probing the P450 catalytic cycle and its transient intermediates.  相似文献   

3.
In flavocytochrome P450 BM3, there is a conserved phenylalanine residue at position 393 (Phe393), close to Cys400, the thiolate ligand to the heme. Substitution of Phe393 by Ala, His, Tyr, and Trp has allowed us to modulate the reduction potential of the heme, while retaining the structural integrity of the enzyme's active site. Substrate binding triggers electron transfer in P450 BM3 by inducing a shift from a low- to high-spin ferric heme and a 140 mV increase in the heme reduction potential. Kinetic analysis of the mutants indicated that the spin-state shift alone accelerates the rate of heme reduction (the rate determining step for overall catalysis) by 200-fold and that the concomitant shift in reduction potential is only responsible for a modest 2-fold rate enhancement. The second step in the P450 catalytic cycle involves binding of dioxygen to the ferrous heme. The stabilities of the oxy-ferrous complexes in the mutant enzymes were also analyzed using stopped-flow kinetics. These were found to be surprisingly stable, decaying to superoxide and ferric heme at rates of 0.01-0.5 s(-)(1). The stability of the oxy-ferrous complexes was greater for mutants with higher reduction potentials, which had lower catalytic turnover rates but faster heme reduction rates. The catalytic rate-determining step of these enzymes can no longer be the initial heme reduction event but is likely to be either reduction of the stabilized oxy-ferrous complex, i.e., the second flavin to heme electron transfer or a subsequent protonation event. Modulating the reduction potential of P450 BM3 appears to tune the two steps in opposite directions; the potential of the wild-type enzyme appears to be optimized to maximize the overall rate of turnover. The dependence of the visible absorption spectrum of the oxy-ferrous complex on the heme reduction potential is also discussed.  相似文献   

4.
Using a combination of M?ssbauer spectroscopy and density functional calculations, we have determined that the ferryl forms of P450(BM3) and P450cam are protonated at physiological pH. Density functional calculations were performed on large active-site models of these enzymes to determine the theoretical M?ssbauer parameters for the ferryl and protonated ferryl (Fe(IV)OH) species. These calculations revealed a significant enlargement of the quadrupole splitting parameter upon protonation of the ferryl unit. The calculated quadrupole splittings for the protonated and unprotonated ferryl forms of P450(BM3) are DeltaE(Q) = 2.17 mm/s and DeltaE(Q) = 1.05 mm/s, respectively. For P450cam, they are DeltaE(Q) = 1.84 mm/s and DeltaE(Q) = 0.66 mm/s, respectively. The experimentally determined quadrupole splittings (P450(BM3), DeltaE(Q) = 2.16 mm/s; P450cam, DeltaE(Q) = 2.06 mm/s) are in good agreement with the values calculated for the protonated forms of the enzymes. Our results suggest that basic ferryls are a natural consequence of thiolate-ligated hemes.  相似文献   

5.
The cytochrome P450 superfamily of monoxygenases are highly relevant for pharmaceutical, environmental and biocatalytical applications. The binding of a substrate to their catalytic site is usually detectable by UV-vis spectroscopy as a low-to-high spin state transition of the heme iron. However, the discovery of potential new substrates is limited by the fact that some compounds do not cause the typical spin-shift even if they are oxidised by P450 enzymes. Here we report a fluorescence-based method able to detect the binding of such substrates to the heme domain of cytochrome P450 BM3 from Bacillus megaterium. The protein was labeled with the fluorescent probe N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-Yl)-ethylenediamine (IANBD). Arachidonic and lauric acids are substrates of P450 BM3 and were used to validate the method, as their binding can be detected both by a spin-shift of the Soret peak from 419 to 397 nm and by the fluorescence change of the labelled protein. The fluorescence emission of the probe linked to the protein increased by a value corresponding to 121 ± 9% and 52 ± 5% with respect to the initial one, upon titration with arachidonic or lauric acids respectively. The dissociation constants were calculated by both UV-vis and fluorescence spectroscopy. Three drugs, propranolol, chlorzoxazone and nifedipine, known to be oxidized by P450 BM3 and that bind without causing spin-shift, were also tested and the fluorescence emission of IANBD was found to decrease by 29 ± 5%, 21 ± 2% and 23 ± 3%, respectively, allowing the measurement of their dissociation constants.  相似文献   

6.
Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at -330 mV (vs Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with the scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s-1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron-transfer rates that differ by approximately 100 mV and >10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties.  相似文献   

7.
A key step in cytochrome P450 catalysis includes the spin‐state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin‐state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen‐bonding interactions on the electronic structure of a five‐coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen‐bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations.  相似文献   

8.
Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non‐functionalized hydrocarbons. Here, we have designed a novel light‐driven platform for cofactor‐free, whole‐cell P450 photo‐biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β‐estradiol), to demonstrate the general applicability of the light‐driven, cofactor‐free system.  相似文献   

9.
《Comptes Rendus Chimie》2017,20(3):237-242
The unique photochemical properties of Ru(II)-diimine photosensitizers have enabled light-induced electron transfers in hybrid P450 heme domain enzymes. Rapid quenching of the excited state by soluble molecules generates either a highly oxidative or reductive species depending on the nature of the quencher. Under flash quench oxidative conditions, the heme cofactor of the P450 BM3 enzyme is oxidized to a high-valent ferryl species. Meanwhile, a photogenerated reductive species is able to deliver the necessary electrons to P450 heme active sites and sustain photocatalytic activity in the selective hydroxylation of substrate C–H bonds.  相似文献   

10.
We have developed hybrid P450 BM3 enzymes consisting of a Ru(II)-diimine photosensitizer covalently attached to non-native single cysteine residues of P450 BM3 heme domain mutants. These enzymes are capable, upon light activation, of selectively hydroxylating lauric acid with 40 times higher total turnover numbers compared to the peroxide shunt.  相似文献   

11.
Cyclic voltabsorptometry is used for the first time to distinguish and characterize electrochemically the active (P450) and inactive (P420) forms of cytochromes P450 immobilized on an electrode during voltammetry experiments. This was achieved by using the heme domain (BMP) of the bacterial cytochrome P450 BM3 from Bacillus megaterium (CYP102A1) immobilized on mesopouros tin-oxide (SnO2) electrodes. We demonstrate that the formation of either the P450 form or the P420 one can be obtained by modifying the mesoporous electrode surface with polycations with different properties such as polyethylenimmine (PEI) and polydiallyldimethylammonium chloride (PDDA). Potential step spectroelectrochemistry allowed measurement of reduction potentials of the active P450 form. Values of -0.39+/-0.01 V and -0.58+/-0.01 V (both versus Ag/AgCl) were calculated for the active P450 form immobilized on the BMP/PDDA-SnO2 and BMP/PEI-SnO2 electrodes, respectively. The cyclic voltabsorptometric experiments showed how, when both the active and inactive forms are present on the PEI film, the inactive P420 species tends to dominate the cyclic voltammetric signal.  相似文献   

12.
Cytochromes P450 are a ubiquitous group of hemoproteins that perform vital cellular reactions in all lifeforms. Until recently, it was thought that P450s contained non-covalently bound heme. However, it was established that covalent linkage of the heme macrocycle occurs naturally in one major group of the P450 superfamily. The reaction involves heme linkage to a conserved amino acid and is autocatalytic, occurring as a consequence of P450 turnover. This finding presents opportunities to engineer biotechnologically important P450s to covalently link the heme, in order to stabilize cofactor binding and to enhance operational stability of these P450s. This opportunity has been taken in studies on two important bacterial P450s and has produced variants with intriguingly different properties. In this article we survey the developments in the field, the relationships with heme macrocycle ligations in other proteins and the important impact that recent studies of heme ligation have had on our general appreciation of P450 structure and mechanism.  相似文献   

13.
A precise understanding of the mechanism‐based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug–drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism‐based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1‐dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene‐type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C? H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N? H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene‐type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450‐catalyzed reaction.  相似文献   

14.
Despite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure‐based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N‐abietoyl‐l ‐tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild‐type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near‐atomic resolution of 1.22 Å. Using these crystals as seeds in a cross‐microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem‐domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle.  相似文献   

15.
We have electronically wired the cytochrome P450 BM3 heme domain to a graphite electrode with the use of a pyrene-terminated tether. AFM images clearly reveal that pyrene-wired enzyme molecules are adsorbed to the electrode surface. The enzyme-electrode system undergoes rapid and reversible electron transfer, displaying a standard rate constant higher than that of any other P450-electrode system. We also show that the graphite-pyrene-BM3 system catalyzes the four-electron reduction of dioxygen to water.  相似文献   

16.
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.  相似文献   

17.
We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.  相似文献   

18.
A new model for the P450 enzyme carrying a SO(3)(-) ligand coordinated to iron(III) (complex 2) reversibly binds NO to yield the nitrosyl adduct. The rate constant for NO binding to 2 in toluene is of the same order of magnitude as that found for the nitrosylation of the native, substrate-bound form of P450(cam) (E.S-P450(cam)). Large and negative activation entropy and activation volume values for the binding of NO to complex 2 support a mechanism that is dominated by bond formation with concomitant iron spin change from S = (5)/(2) to S = 0, as proposed for the reaction between NO and E.S-P450(cam). In contrast, the dissociation of NO from 2(NO) was found to be several orders of magnitude faster than the corresponding reaction for the E.S-P450(cam)/NO system. In a coordinating solvent such as methanol, the alcohol coordinates to iron(III) of 2 at the distal position, generating a six-coordinate, high-spin species 5. The reaction of NO with 5 in methanol was found to be much slower in comparison to the nitrosylation reaction of 2 in toluene. This behavior can be explained in terms of a mechanism in which methanol must be displaced during Fe-NO bond formation. The thermodynamic and kinetic data for NO binding to the new model complexes of P450 (2 and 5) are discussed in reference to earlier results obtained for closely related nitrosylation reactions of cytochrome P450(cam) (in the presence and in the absence of the substrate) and a thiolate-ligated iron(III) model complex.  相似文献   

19.
The plant originated stilbene “resveratrol” (3,4′,5-trans-trihydroxystilbene) is well known for its diverse health benefits including anti-tumor, anti-inflammatory, anti-microbial, and anti-oxidant properties. Besides a significant amount of reports on different aspects of its application as prodrug in the last 50 years, still, a strategy leading to the production of the active drug is missing. The aim of this work was to evaluate the enzymatic activation of prodrug resveratrol to the effective drug piceatannol, without engaging expensive cofactors. Five different heme proteins were analyzed for the transformation of resveratrol. Kinetic parameters of resveratrol transformation and analysis of the transformed products were conducted through HPLC and GC-MS. Effect of pH and organic solvent on the transformation process had also been evaluated. Among all tested heme proteins, only a variant of cytochrome P450BM3 from Bacillus megaterium (CYPBM3F87A) was found suitable for piceatannol production. The most suitable pH for the reaction conditions was 8.5, while organic solvents did not show any effect on transformation. For resveratrol transformation, the turnover rate (k cat) was 21.7 (± 0.6) min?1, the affinity constant (K M) showed a value of 55.7 (± 16.7) μM for a catalytic efficiency (k cat/K M) of 389 min?1 mM?1. GC-MS analysis showed that the only product from resveratrol transformation by cytochrome P450BM3 is the biologically active piceatannol. The enzymatic transformation of resveratrol, an emerging compound with medical interest, to active product piceatannol by a variant of cytochrome P450BM3 in the absence of expensive NADPH cofactor is demonstrated. This enzymatic process is economically attractive and can be scaled up to cover the increasing medical demand for piceatannol.  相似文献   

20.
We have studied the characterization of thermophilic cytochrome P450 (P450st)‐didodecyldimethylammonium bromide (DDAB) films by using UV‐vis absorption, resonance Raman spectroscopy, and electrochemical methods. The observed Raman spectrum indicated near‐native conformation of the heme iron in DDAB film on the surface of a glass slide, while on the surface of a plastic‐formed carbon (PFC) electrode, the conformation of P450st‐DDAB was very similar to that of heme‐DDAB film, suggesting the release of heme from P450st in DDAB films on PFC electrodes. When NaBr was added as salt to the casting solution, the result of Raman spectrum indicated near‐native conformation of P450st in DDAB film even on the PFC electrode, but no redox potential of P450st which has near native structure was observed. This study suggests the essential experimental conditions when working with heme protein‐DDAB films as, in some cases, heme iron from proteins is released on the surface of the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号