首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

2.
Dark green crystals of (NpO(2))(3)(OH)(SeO(3))(H(2)O)(2)·H(2)O (1) have been prepared by a hydrothermal reaction of neptunyl(V) and Na(2)SeO(4) in an aqueous solution at 150 °C, while green plates of Na(NpO(2))(SeO(3))(H(2)O) (2) have been synthesized by evaporation of a solution of neptunyl(V), H(2)SeO(4), and NaOH at room temperature. Both compounds have been characterized by single-crystal X-ray diffraction. The structure of compound contains three crystallographically unique Np atoms that are bonded to two O atoms to form a nearly linear O═Np═O NpO(2)(+) cation. Neighboring Np(5+) ions connect to each other through a bridging oxo ion from the neptunyl unit, a configuration known as cation-cation interactions (CCIs), to build a complex three-dimensional network. More specifically, each Np(1)O(2)(+), Np(2)O(2)(+), and Np(3)O(2)(+) cation is involved in three, five, and four CCIs with other units, respectively. The framework of neptunyl(V) pentagonal bipyramids is decorated by selenite trigonal pyramids with one-dimensional open channels where uncoordinated waters are trapped via hydrogen bonding interactions. Compound adopts uranophane-type [(NpO(2))(SeO(3))](-) layers, which are separated by Na(+) cations and water molecules. Within each layer, neptunyl(V) pentagonal bipyramids share equatorial edges with each other to form a single chain that is further connected by both monodentate and bidentate selenite trigonal pyramids. Crystallographic data: compound, monoclinic, P2(1)/c, Z = 4, a = 6.6363(8) ?, b = 15.440(2) ?, c = 11.583(1) ?, β = 103.549(1)°, V = 1153.8(2) ?(3), R(F) = 0.0387 for I > 2σ(I); compound (2), monoclinic, C2/m, Z = 4, a = 14.874(4) ?, b = 7.271(2) ?, c = 6.758(2) ?, β = 112.005(4)°, V = 677.7(3) ?(3), R(F) = 0.0477 for I > 2σ(I).  相似文献   

3.
Kwon YU  Lee KS  Kim YH 《Inorganic chemistry》1996,35(5):1161-1167
Hydrothermal reactions in the V(2)O(5)-SeO(2)-AOH systems (A = Na, K, Rb, Cs, NH(4)) were studied with various reagent mole ratios. Typical millimole ratios were V(2)O(5)/SeO(2)/AOH = 5 or 3/15/x in 10-mL aqueous solutions, where x was 5, 10, 15, and 20. The reactions with x = 5 for A = K, Rb, Cs, and NH(4) at 230 degrees C produced single-phase products of the general formula AV(3)Se(2)O(12) with the (NH(4))(VO)(3)(SeO(3))(2) structure type. The x = 15 reactions for A = Rb and Cs yielded AVSeO(5) phases with a new structure type. The crystal structure for CsVSeO(5) was determined with X-ray single-crystal diffraction techniques to be monoclinic (P2(1) (No. 4), a = 7.887(3) ?, b = 7.843(2) ?, c = 9.497(3) ?, beta = 92.13(3) degrees, Z = 4). The structure of this compound consists of interwoven helixes extended in all three directions. The spires are composed of alternating SeO(3) and VO(5) units sharing common-edge oxygens in all three directions. For A = K and NH(4), the reactions of this mole ratio did not produce any identifiable phases. Each of the compounds is characterized by powder X-ray diffraction, infrared spectroscopic, and thermogravimetric techniques. The dependency of the synthesis results on the reaction conditions is discussed and rationalized.  相似文献   

4.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

5.
Pleochroistic crystals (dark green to colorless) of a mixed-valence V(IV)-V(V) compound, K(6)(VO)(4)(SO(4))(8), suitable for X-ray determination have been obtained from the catalytically important K(2)S(2)O(7)-V(2)O(5)/SO(2)-O(2)-SO(3)-N(2) molten salt-gas system, at approximately 400 degrees C. The compound crystallizes in the monoclinic space group P2(1) (No. 4) with a = 8.931(2) ?, b = 18.303 (3) ?, c = 9.971(2) ?, beta = 90.11(2) degrees, and Z = 2. It contains two rather similar V(IV)-V(V) pairs of VO(6) octahedra distorted as usual having a short V-O bond of around 1.57 ?, a long bond of around 2.40 ? trans to this, and four equatorial bonds around 2.00 ?. The bond lengths of the V(V)O(6) octahedra are significantly shorter than those found for the V(IV)O(6) octahedra. The eight different SO(4)(2)(-) groups are all bridging bidentate between the V(IV) and V(V) atoms; a third oxygen is coordinated to a vanadium atom of a neighboring chain trans to the short V=O bond, and the fourth oxygen remains uncoordinated. The measured bond distances and angles show a considerable distortion of the SO(4) tetrahedra. This is confirmed by the IR spectra of the compound, where large shift and splitting of the sulfate nu(3) bands up to wave numbers of around 1300 cm(-)(1) is observed. The ESR spectra of the compound exhibit weak anisotropy with g(iso) = 1.972 +/- 0.002 and DeltaB(pp) = 65 +/- 2 G. The compound may cause the deactivation for industrial sulfuric acid catalysts observed around 400 degrees C in highly converted SO(2)-O(2)-N(2) gas mixtures.  相似文献   

6.
Two new noncentrosymmetric (NCS) polar oxide materials, Zn(2)(MoO(4))(AO(3)) (A = Se(4+) or Te(4+)), have been synthesized by hydrothermal and solid-state techniques. Their crystal structures have been determined, and characterization of their functional properties (second-harmonic generation, piezoelectricity, and polarization) has been performed. The isostructural materials exhibit a three-dimensional network consisting of ZnO(4), ZnO(6), MoO(4), and AO(3) polyhedra that share edges and corners. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of 100 × and 80 × α-SiO(2) for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Particle size vs SHG efficiency measurements indicate the materials are type 1 non-phase-matchable. Converse piezoelectric measurements resulted in d(33) values of ~14 and ~30 pm/V for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively, whereas pyroelectric measurements revealed coefficients of -0.31 and -0.64 μC/m(2) K at 55 °C for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric; that is, the macroscopic polarization is not reversible, or "switchable". Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were also performed. First-principles density functional theory (DFT) electronic structure calculations were also done. Crystal data: Zn(2)(MoO(4))(SeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.1809(4) ?, b = 8.3238(7) ?, c = 7.1541(6) ?, β = 99.413(1)°, V = 305.2(1) ?(3), Z = 2; Zn(2)(MoO(4))(TeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.178(4) ?, b = 8.409(6) ?, c = 7.241(5) ?, β = 99.351(8)°, V = 311.1(4) ?(3), Z = 2.  相似文献   

7.
Red-brown crystals of a new mixed alkali oxo sulfato vanadium(V) compound Na(2)K(6)(VO)(2)(SO(4))(7), suitable for X-ray determination, have been obtained from the catalytically important binary molten salt system M(2)S(2)O(7)-V(2)O(5) (M = 80% K and 20% Na). By slow cooling of a mixture with the mole fraction X(V(2)O(5)) = 0.24 from 325 degrees C, i.e., just below the liquidus temperature, to the solidus temperature of around 300 degrees C, a dark reddish amorphous phase was obtained containing crystals of the earlier described V(V)-V(IV) mixed valence compound K(6)(VO)(4)(SO(4))(8) and Na(2)K(6)(VO)(2)(SO(4))(7) described here. This compound crystallizes in the tetragonal space group P4(3)2(1)2 (No. 96) with a = 9.540(3) A, c = 29.551(5) A at 20 degrees C and Z = 4. It contains a distorted VO(6) octahedron with a short V-O bond of 1.552(6) A, a long one of 2.276(5) A trans to this, and four equatorial V-O bonds in the range 1.881(6)-1.960(6) A. The deformation of the VO(6) octahedron is less pronounced compared to that of the known oxo sulfato V(V) compounds. Each VO(3+) group is coordinated to five sulfate groups of which two are unidentately coordinated and three are bidentate bridging to neighboring VO(3+) groups. The length of the S-O bonds in the S-O-V bridges of the two unidentately coordinated sulfato groups are 1.551(6) A and 1.568(6) A, respectively, which are unusually long compared to our earlier measurements of sulfate groups in other V(III), V(IV), and V(V) compounds.  相似文献   

8.
Systematic explorations of new phases in the Ln(III)-V(V)-Se(IV)-O systems by hydrothermal syntheses led to four new quaternary compounds, namely, Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O (1), Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu 2, Gd 3, Tb 4). The structure of Nd(2)(V(V)(2)O(4))(SeO(3))(4)·H(2)O features a 3D framework composed of the 2D layers of [N d(SeO(3))](+) bridged by the infinite [VO(2)(SeO(3))](-) chains with the lattice water molecules located at the 6-membered ring tunnels formed. The structure of Ln(V(V)O(2))(SeO(3))(2) (Ln = Eu, Gd, Tb) also features a 3D framework composed of 2D layers of [Ln(SeO(3))](+) bridged by the infinite [(VO(2))(SeO(3))](-) double chains. The 1D vanadium oxide selenite chain of 1 differs significantly from those in compounds 2-4 in terms of the coordination modes of the selenite groups and the connectivities between neighbouring VO(6) octahedra. Luminescent and magnetic properties of these compounds were also measured.  相似文献   

9.
Six new divalent metal selenites have been synthesized by hydro-/solvothermal methods which leads to the incorporation of the organic template as a cation or a ligand. The structure of [H(2)pip][Cu(SeO(3))(2)] (1) (pip=piperazine) features 1D anionic chains of [Cu(SeO(3))(2)](2-) which are cross-linked by the template cations through hydrogen bonds into a 2D layer. In [Cu(C(3)H(4)N(2))(SeO(3))] (2) the organic template is coordinated to the copper(II) ion of the inorganic Cu(SeO(3)) layer. The isostructural compounds [H(2)en][M(HSeO(3))(2)Cl(2)] (en=ethylenediamine; M=Cu (3), Co (4)) contain layers of [MCl(2)(HSeO(3))(2)](2-) units (M=Cu, Co), which are cross-linked by the template cations via hydrogen bonds into a 3D network. The structure of [H(2)en][Cu(2)(SeO(3))(2)(HSeO(3))](2)H(2)O (5), consists of a pillared layered architecture in which the Cu(SeO(3)) layers are further interconnected by bridging hydrogen selenite groups (the pillar). The compound [H(2)pip][Cu(2)(Se(2)O(5))(3)] (6), which crystallizes as a 3D open framework represents the first organically templated metal diselenite. These new compounds are thermally stable up to at least 170 degrees C. All of the compounds exhibit fairly strong antiferromagnetic interactions. More interestingly, compounds 3 and 4 behave as a weak ferromagnets below the critical temperatures of T(c)=12 and 8 K, respectively, and both of them exhibit spin-flop phase transitions around 800+/-100 Oe.  相似文献   

10.
Green crystals of (NpO(2))(2)(SeO(4))(H(2)O)(4), (NpO(2))(2)(SeO(4))(H(2)O)(2), and (NpO(2))(2)(SeO(4))(H(2)O) have been prepared by hydrothermal methods. The structures of these compounds have been characterized by single-crystal X-ray diffraction. (NpO(2))(2)(SeO(4))(H(2)O)(4), isostructural with (NpO(2))(2)(SO(4))(H(2)O)(4), is constructed from layers comprised of corner-sharing neptunyl(V) pentagonal bipyramids and selenate tetrahedra that are further linked by hydrogen bonding with water molecules. Each NpO(2)(+) cation binds to four other NpO(2)(+) units through cation-cation interactions (CCIs) to form a distorted "cationic square net" decorated by SeO(4)(2-) tetrahedra above and below the layer. Each selenate anion is bound to two neptunyl(V) cations through monodentate linkages. (NpO(2))(2)(SeO(4))(H(2)O)(2) is isostructural with the corresponding sulfate analogue as well. It consists of puckered layers of neptunyl(V) pentagonal bipyramids that are further connected by selenate tetrahedra to form a three-dimensional framework. The CCI pattern in the neptunyl layers of dihydrate is very similar to that of tetrahydrate; however, each SeO(4)(2-) tetrahedron is bound to four NpO(2)(+) cations in a mondentate manner. (NpO(2))(2)(SeO(4))(H(2)O) crystallizes in the monoclinic space group P2(1)/c, which differs from the (NpO(2))(2)(SO(4))(H(2)O) orthorhombic structure due to the slightly different connectivities between NpO(2)(+) cations and anionic ligands. The structure of (NpO(2))(2)(SeO(4))(H(2)O) adopts a three-dimensional network of distort neptunyl(V) pentagonal bipyramids decorated by selenate tetrahedra. Each NpO(2)(+) cation connects to four other NpO(2)(+) units through CCIs and also shares an equatorial coordinating oxygen atom with one of the other units in addition to the CC bond to form a dimer. Each SeO(4)(2-) tetrahedron is bound to five NpO(2)(+) cations in a monodentate manner. Magnetic measurements obtained from the powdered tetrahydrate are consistent with a ferromagnetic ordering of the neptunyl(V) spins at 8(1) K, with an average low temperature saturation moment of 1.98(8) μ(B) per Np. Well above the ordering temperature, the susceptibility follows Curie-Weiss behavior, with an average effective moment of 3.4(2) μ(B) per Np and a Weiss constant of 14(4) K. Correlations between lattice dimensionality and magnetic behavior are discussed.  相似文献   

11.
The pentafluorooxotellurate compound ReO(2)(OTeF(5))(3) has been synthesized from the reaction of ReO(2)F(3) with B(OTeF(5))(3) and structurally characterized in solution by (19)F and (125)Te NMR spectroscopy and in the solid state by Raman spectroscopy. The NMR and vibrational spectroscopic findings are consistent with a trigonal bipyramidal arrangement in which the oxygen atoms and an OTeF(5) group occupy the equatorial plane. The (19)F and (125)Te NMR spectra show that the axial and equatorial OTeF(5) groups of ReO(2)(OTeF(5))(3) are fluxional and are consistent with intramolecular exchange by means of a pseudorotation. The Lewis acid behavior of ReO(2)(OTeF(5))(3) is demonstrated by reaction with OTeF(5)(-). The resulting cis-ReO(2)(OTeF(5))(4)(-) anion was characterized as the tetramethylammonium salt in solution by (19)F and (125)Te NMR spectroscopy and in the solid state by Raman spectroscopy and X-ray crystallography. The compound crystallizes in the triclinic system, space group P&onemacr;, with a = 13.175(7) ?, b = 13.811(5) ?, c = 15.38(1) ?, alpha = 72.36(5)(o), beta = 68.17(5)(o), gamma = 84.05(4)(o), V = 2476(2) ?(3), D(calc) = 3.345 g cm(-)(3), Z = 4, R = 0.0547. The coordination sphere about Re(VII) in cis-ReO(2)(OTeF(5))(4)(-) is a pseudooctahedron in which the Re-O double bond oxygens are cis to one another.  相似文献   

12.
The complexes, [VO(O(2))(pa)(2)]ClO(4).3H(2)O (1), [VO(O(2))(pa)(2)][VO(O(2))(2)(pa)].3H(2)O (2), [VO(O(2))(pa)(2)][VO(O(2))(ada)].2H(2)O (3) and [VO(O(2))(pa)(pca)].H(2)O (4)[pa = picolinamide, ada = carbamoylmethyliminodiacetate(2-) and pca = 2-pyrazinecarboxylate(1-)], were synthesized. 2 and 3 are new types of peroxovanadium complexes: monoperoxovanadium diperoxovanadate (2) and monoperoxovanadium monoperoxovanadate (3). The complexes were characterized by chemical analysis and IR spectroscopy, and 1, 3 and 4 also by X-ray analysis. The structure of 1 is disordered, with alternating positions of the oxo and peroxo ligands. The peroxo oxygen atoms, O(p), in 1 are involved in weak hydrogen bonds with water molecules and close intramolecular C-HO...(p) bonds [d(HO(p)) approximately 2.0 A]. The supramolecular structure of 1 is formed by a network of hydrogen bonds and strong attractive intermolecular pi-pi interactions between the pyridine rings. The supramolecular architecture in 4 is constructed by (N,O)-H...O hydrogen bonds between the neutral complex molecules and water of crystallization. The peroxo oxygen atoms in 4 form intramolecular C-H...O(p) bonds [d(H...O(p))= 2.303 A]. The pa and pca ligands are ON coordinated via the oxygen atoms of the C(NH(2))=O and COO(-) groups, respectively, and nitrogen atoms of the heterocyclic rings, and ada as a tetradentate O(3)N ligand. The thermal analysis of 4 showed that the loss of water of crystallization and the active oxygen release (T(min)/ degrees C 82, T(max)/degrees C 165) are, under given conditions, individual processes separated by the temperature interval 90-132 degrees C. The solution structures and stability were studied by UV-VIS and (51)V NMR spectroscopies.  相似文献   

13.
(H(3)O)(2)[V(4)(HPO(4))(PO(4))(3)O(6)F](2)[NC(7)H(14)](6) (labeled ULM-17) has been hydrothermally synthesized (150 degrees, 24 h, autogeneous pressure). It is monoclinic (space group P2(1)/c (No. 14)) with a = 21.4747(6) ?, b = 17.7223(5) ?, c = 20.1616(6) ?, beta = 94.329(1) degrees, and Z = 4. The structure consists in the hexagonal close packing of discrete hydronium cations, protonated quinuclidine and molecular anions [V(4)(HPO(4))(PO(4))(3)O(6)F](4)(-) (1) The structure presents two kinds of octameric anions built up from the tetrahedral arrangement of V(V)O(5)F octahedra sharing edges and vertices, capped by phosphorus tetrahedra. The stability of the solid is ensured via strong hydrogen bonds between the oxygens of the polyanions and the hydrogens of both hydronium and quinuclidinium cations. The particuliar location of fluorine at the center of the molecular anion 4-fold coordinated by V(V) was studied by solid state NMR.  相似文献   

14.
Zhang SY  Hu CL  Sun CF  Mao JG 《Inorganic chemistry》2010,49(24):11627-11636
Six new novel alkaline-earth metal vanadium(V) or vanadium(IV) selenites and tellurites, namely, Sr(2)(VO)(3)(SeO(3))(5), Sr(V(2)O(5))(TeO(3)), Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O), Ba(3)(VO(2))(2)(SeO(3))(4), Ba(2)(VO(3))Te(4)O(9)(OH), and Ba(2)V(2)O(5)(Te(2)O(6)), have been prepared and structurally characterized by single crystal X-ray diffraction analyses. These compounds exhibit six different anionic structures ranging from zero-dimensional (0D) cluster to three-dimensional (3D) network. Sr(2)(VO)(3)(SeO(3))(5) features a 3D anionic framework composed of VO(6) octahedra that are bridged by SeO(3) polyhedra. The oxidation state of the vanadium cation is +4 because of the partial reduction of V(2)O(5) by SeO(2) at high temperature. Ba(3)(VO(2))(2)(SeO(3))(4) features a 0D [(VO(2))(SeO(3))(2)](3-) anion. Sr(V(2)O(5))(TeO(3)) displays a unique 1D vanadium(V) tellurite chain composed of V(2)O(8) and V(2)O(7) units connected by tellurite groups, forming 4- and 10-MRs, whereas Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O) exhibits a 2D layer consisting of [V(4)O(14)] tetramers interconnected by bridging TeO(3)(2-) anions with the Sr(2+) and water molecules located at the interlayer space. Ba(2)(VO(3))Te(4)O(9)(OH) exhibits a one-dimensional (1D) vanadium tellurite chain composed of a novel 1D [Te(4)O(9)(OH)](3-) chain further decorated by VO(4) tetrahedra. Ba(2)V(2)O(5)(Te(2)O(6)) also features a 1D vanadium(V) tellurites chain in which neighboring VO(4) tetrahedra are bridged by [Te(2)O(6)](4-) dimers. The existence of V(4+) ions in Sr(2)(VO)(3)(SeO(3))(5) is also confirmed by magnetic measurements. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory (DFT) methods indicate that all six compounds are wide-band gap semiconductors.  相似文献   

15.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

16.
Several new polyhydride complexes of rhenium containing the tridentate phosphine PhP(CH(2)CH(2)CH(2)PCy(2))(2) (Cyttp) were synthesized and characterized by (1)H and (31)P{(1)H} NMR and IR spectroscopy. The solid state structure of the previously reported ReH(5)(Cyttp) (1) was determined by X-ray crystallography. 1 crystallizes in the space group P2(1)/m with the following unit cell parameters: a = 8.582(2) ?, b = 19.690(2) ?, c = 10.800(2) ?, beta = 95.57(1) degrees, and Z = 2. The molecule adopts a classical polyhydride, triangulated dodecahedral structure, with the three phosphorus atoms and one hydrogen atom occupying the B sites, and the remaining hydrogen atoms occupying the A sites. 1 is protonated by HSbF(6) (or HBF(4)) to yield [ReH(4)(eta(2)-H(2))(Cyttp)]SbF(6) (3), which was shown by X-ray diffraction techniques (space group P&onemacr;, unit cell parameters: a = 9.874(2) ?, b = 14.242(4) ?, c = 16.198(2) ?, alpha = 99.12(2) degrees, beta = 98.85(2) degrees, gamma = 109.42(2) degrees, and Z = 2) to contain a nonclassical polyhydride cation with a triangulated dodecahedral structure in the solid. The same structure is suggested in solution by (1)H NMR data (including T(1) measurements). 3 is inert to loss of H(2) and is unaffected by CO, t-BuNC, and P(OMe)(3) at room temperature. In contrast, 1 reacts with a variety of reagents to afford classical tetrahydride complexes which are thought also to possess a triangulated dodecahedral structure, with the hydrogens in the A sites, from spectroscopic evidence. Accordingly, CS(2), p-O(2)NC(6)H(4)NCS, and EtOC(O)NCS (X=C=S) insert into an Re-H bond to yield ReH(4)(SCH=X)(Cyttp) (5-7, respectively). MeI cleaves one Re-H bond to afford ReH(4)I(Cyttp) (8), and [C(7)H(7)]BF(4) abstracts hydride in the presence of MeCN, t-BuNC, CyNC, or P(OMe)(3) (L) to give [ReH(4)L(Cyttp)]BF(4) (9-12, respectively). A related pentahydride, ReH(5)(ttp) (2, ttp = PhP(CH(2)CH(2)CH(2)PPh(2))(2)), also reacts with HSbF(6) to yield [ReH(6)(ttp)]SbF(6) (4), which appears to be a nonclassical polyhydride in solution by T(1) measurements.  相似文献   

17.
Reaction of palladium acetate with 2 equiv of sodium phenoxide in the presence of a chelate diamine ligand affords the complexes [Pd(OPh)(2)(N approximately N)] (N approximately N = bpy (1), tmeda (2), teeda (3), dpe (4), dmap (5)). These yellow to orange bis(phenoxo)palladium(II) complexes are thermally stable at room temperature in the solid state as well as in solution. Addition of an excess of pentafluorophenol to 1, 2, 4, and 5 affords crystalline complexes [Pd(OC(6)F(5))(2)(N approximately N)] (N approximately N = bpy (6), tmeda (7), dpe (8), dmap (9)). Crystals of 1 and 6 have been subjected to X-ray diffraction studies. Crystals of 1 are orthorhombic, space group P2(1)2(1)2(1) (no. 19), with a = 6.7655(6) ?, b = 16.0585(10) ?, c = 16.7275(13) ?, and Z = 4. Crystals of 6 are triclinic, space group P&onemacr; (no. 2), with a = 7.567(4) ?, b = 12.708(3) ?, c = 12.912(5) ?, alpha = 61.51(3) degrees, beta = 74.74(4) degrees, gamma = 88.78(4) degrees, and Z = 2. The molecular structures of 1 and 6 show them to be square-planar complexes, and the main structural difference between these complexes is the orientation of the aromatic rings. In 6 the OC(6)F(5) ligands are almost parallel in a face-to-face orientation (pi-pi stacking interactions), whereas in 1 the OC(6)H(5) units are skewed away from each other. An unexpected "mixed" alkoxo(aryloxo) complex [Pd(OCH(CF(3))(2))(OPh)(bpy)].HOPh (10) is formed when 1 is reacted with 1,1,1,3,3,3-hexafluoro-2-propanol. The molecular structure of 10 shows O-H.O hydrogen bonding (O.O = 2.642(8) ?) between the hydroxyl hydrogen of phenol and the oxygen atom of the phenoxide ligand as well as an additional C-H.O contact (C.O) = 2.95(1) ?), which can be regarded as the initial stage of a base-assisted beta-hydrogen elimination. Crystals of 10 are monoclinic, space group P2(1)/c, with a = 8.3241(14) ?, b = 11.0316(17) ?, c = 26.376(3) ?, alpha = 93.01(1) degrees, Z = 4. Spectroscopic data of complexes 1-10 indicate that the oxygen atom of the aryloxide or alkoxide ligand is extremely electron-rich, leading to high polarization of the palladium-to-oxygen bond. The bis(phenoxide) complexes 1, 2, and 4 associate with two molecules of phenol through O-H.O hydrogen bonds to form adducts [Pd(OPh)(2)(N approximately N)].2HOPh (N approximately N = bpy (11), tmeda (12), dpe (13)). The palladium complexes 6-9 with OC(6)F(5) groups show no tendency to form adducts with alcohols.  相似文献   

18.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

19.
Two new layered uranyl selenites, [C(4)H(12)N(2)](0.5)[UO(2)(HSeO(3))(SeO(3))] (1) and [C(6)H(14)N(2)](0.5)[UO(2)(HSeO(3))(SeO(3))].0.5H(2)O.0.5CH(3)CO(2)H (2), have been isolated from mild hydrothermal reactions. The preparation of 1 was achieved by reacting UO(2)(C(2)H(3)O(2))(2).2H(2)O with H(2)SeO(4) in the presence of piperazine at 130 degrees C for 2 d. Crystals of 2 were synthesized by reacting UO(2)(C(2)H(3)O(2))(2).2H(2)O, H(2)SeO(4), and 1,4-diazabicyclo[2.2.2]octane at 150 degrees C for 2 d. The structure of 1 consists of UO(2)(2+) cations that are bound by bridging HSeO(3)(-) anions and chelating/bridging SeO(3)(2)(-) anions to yield UO(7) pentagonal bipyramids. The joining of the uranyl moieties by the hydrogen selenite and selenite anions creates two-dimensional 2(infinity) [UO(2)(HSeO(3))(SeO(3))](-) layers that extend in the bc-plane. The stereochemically active lone pair of electrons on the HSeO(3)(-) and SeO(3)(2)(-) anions align along the a-axis making each layer polar. The 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layers and piperazinium cations stack in a AA'BAA'B sequence where two layers stack on one another without intervening piperazinium cations. While each 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layer is polar, in the AA' stacking, the polarity of the second sheet is reversed with respect to the first, yielding an overall structure that is centrosymmetric. The structure of 2 is constructed from uranyl cations that are bound by three bridging SeO(3)(2)(-) and two bridging HSeO(3)(-) anions to create UO(7) pentagonal bipyramids. The linking of the uranyl cations by the HSeO(3)(-) and SeO(3)(2-) anions creates 2(infinity)[UO(2)(HSeO(3))(SeO(3))](-) layers that extend in the ac-plane. In 1 and 2, the organic ammonium cations form hydrogen bonds with the anionic uranyl selenite layers. Crystallographic data: 1, monoclinic, space group P2(1)/c, a = 10.9378(5) A, b = 8.6903(4) A, c = 9.9913(5) A, beta = 90.3040(8) degrees, Z = 4; 2, orthorhombic, space group Pnma, a = 13.0858(8) A, b = 17.555(1) A, c = 10.5984(7) A, Z = 8.  相似文献   

20.
The compound [(CH(3))C(NH(2))(2)](4)[Re(6)Se(8)(CN)(6)] has been synthesized by the reaction at 200 degrees C for 3 days of Re(4)Te(4)(TeCl(2))(4)Cl(8), KSeCN, and NH(4)Cl in superheated acetonitrile. This compound crystallizes in the space group C2/c of the monoclinic system with four formula units in a cell of dimensions a = 20.3113(14) A, b = 10.1332(7) A, c = 19.9981(14) A, beta = 106.754(1) degrees, V = 3941.3(5) A(3) (T = 153 K). The [Re(6)Se(8)(CN)(6)](4-) anion comprises an Re(6) octahedron face capped by mu(3)-Se atoms, with each Re atom liganded by a CN group. The anions and cations are connected by an extensive network of hydrogen bonds. The conversion of a Re(IV) tetrahedral cluster to a Re(III) octahedral cluster appears to be unprecedented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号