首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aliphatic ketones were reduced to the corresponding secondary alcohols by using anti-1,3-diol and a catalytic amount of 2,4-dinitrobenzenesulfonic acid (DNBSA) in benzene at reflux. Addition of 1-octanethiol in that media improved the efficiency of the reduction. Asymmetric reduction of aliphatic ketones was performed by using chiral anti-pentane-2,4-diol, and highly asymmetric induction (up to >99% ee) was observed in the reduction of tert-alkyl ketones. Asymmetric reduction of acyl silanes using chiral anti-pentane-2,4-diol and DNBSA proceeded efficiently in the absence of octanethiol and the corresponding α-silyl alcohols were obtained in high yields with high ees.  相似文献   

2.
Diastereoselective alkylation of ethyl 2-methyl- and/or 2-ethylacetoacetates using the (S,S)-cyclohexane-1,2-diol as an acetal chiral auxiliary afforded enol ethers (2a-f and 5a-f) of 92->95% de in 31-70% yields. Removal of the cyclohexane-1,2-diol with BF(3)-OEt(2) afforded beta-keto esters (3 and 6) bearing a chiral quaternary carbon. The beta-keto esters could be easily converted into optically active alpha-methylated and/or alpha-ethylated alpha,alpha-disubstituted amino acids (12 and 13) in 21-99% yields using Schmidt rearrangement.  相似文献   

3.
The complex [Ru(Cp)(R,R-BIPHOP-F)(acetone)][SbF(6)], (R,R)-1 a, was used as catalyst for asymmetric Diels-Alder reactions between dienes (cyclopentadiene, methylcyclopentadiene, isoprene, 2,3-dimethylbutadiene) and alpha,beta-unsaturated ketones (methyl vinyl ketone (MVK), ethyl vinyl ketone, divinyl ketone, alpha-bromovinyl methyl ketone and alpha-chlorovinyl methyl ketone). The cycloaddition products were obtained in yields of 50-90 % and with enantioselectivities up to 96 % ee. Ethyl vinyl ketone, divinyl ketone and the halogenated vinyl ketones worked best and their reactions with acyclic dienes consistently provided products with >90 % ee. alpha-Chlorovinyl methyl ketone performed better than alpha-bromovinyl methyl ketone. The reaction also provided a [4.3.1]bicyclic ring system in 95 % ee through an intramolecular cycloaddition reaction. Crystal structure determinations of [Ru(Cp)((S,S)-BIPHOP-F)(mvk)][SbF(6)], (S,S)-1 b, and [Ru(Cp)((R,R)-Me(4)BIPHOP-F)(acrolein)][SbF(6)], (R,R)-2 b, provided the basis for a rationalization of the asymmetric induction.  相似文献   

4.
Both enantiomers of Wieland-Miescher ketone [3,4,8, 8a-tetrahydro-8a-methyl-1,6(2H,7H)-naphthalenedione], in a highly enantiomerically enriched form, became readily available by a newly developed kinetic resolution with yeast-mediated reduction. From a screening of yeast strains, Torulaspora delbrueckii IFO 10921 was selected. The collected cells of this strain, obtained by an incubation in a glucose medium, smoothly reduced only the isolated carbonyl group of the (S)-enantiomer, while the (R)-enantiomer remained intact. Starting from both enantiomers ( approximately 70% ee) prepared by an established proline-mediated asymmetric Robinson annulation, the reduction with T. delbrueckii gave the (R)-enantiomer (98% ee) and the corresponding alcohol (4aS,5S)-4,4a, 5,6,7,8-hexahydro-5-hydroxy-4a-methyl-2(3H)-naphthalenone (94% ee, 94% de) in preparative scale in nearly quantitative yields. An approach for the asymmetric synthesis of the Wieland-Miescher ketone was also successful. 2-Methyl-2-(3-oxobutyl)-1,3-cyclohexanedione, the prochiral precursor, was reduced with this strain to give a cyclic acetal form of (2S, 3S)-3-hydroxy-2-methyl-2-(3-oxobutyl)cyclohexanone, in a stereomerically pure form.  相似文献   

5.
Mossambine (6) was obtained by a six-step reaction sequence from the indoloazepine ester 7. Radical cyclization of the tetracyclic vinyl iodide 12a provided a racemic pentacyclic ketone 16E, which could be converted to either enantiomer by condensation with (S or R)-N,S-dimethyl-S-phenylsulfoximine and selective pyrolysis of the resulting diastereomeric alcohols 18 and 19 or 20 and 21. Selective reductions of the resolved (or racemic) ketone 16E provided mossambine (6) and its hydroxy epimer 17.  相似文献   

6.
Two py-hexahydrocinchonidine diastereomers were selectively obtained in the heterogeneous catalytic hydrogenation of cinchonidine over supported Pt catalyst. The two isolated compounds when used as chiral base catalysts in the Michael addition of a beta-keto ester to methyl vinyl ketone gave products of opposite configuration in excess. To trace the reason of this behavior, in the present study, the structures of the two diastereomers were fully optimized by ab initio quantum chemical calculation. These results were then compared with several nuclear Overhauser enhancement spectroscopy (NOESY) signal intensities from the spectra of the two compounds. Further we performed a conformational search on all the optimized geometries independently for the two flexible torsional angles, which are linking the quinuclidine and tetrahydroquinoline moieties present in these molecules. This study allowed us to propose the configuration of the C(4)(') chiral center. Thus, the product mixture resulted in the hydrogenation of cinchonidine containing the 4'-(S)-diastereomer in excess (de = 20%). According to the computation results the 4'-(S)-diastereomer is more stable than the 4'-(R)-diastereomer. The 4'-(S)-conformer obtained by computation has lower electronic energy than the structures obtained for the 4'-(R)-diastereomer, which may explain the excess formation of the first one. The results of the Michael addition catalyzed by these diastereomers were interpreted on the basis of these conclusions.  相似文献   

7.
Pd-catalyzed enantioselective diboration of prochiral allenes provides adducts which participate in highly selective allylation reactions with primary imines. The allylation product is a vinyl boronate which may be oxidized to give nonracemic Mannich products (87-97% ee). Alternatively, enantiomerically enriched homoallylic amine derivatives may be obtained by protonation and Suzuki cross-coupling of the vinyl boronate.  相似文献   

8.
The synthesis of two Ru chloro complexes, Ru(III)Cl(3)(bpea), 1, and cis-fac-Delta-[Ru(II)Cl{(R)-(bpea)}{(S)-(BINAP)}](BF(4)), cis-fac-Delta-(R)-(S)-2, (bpea = N,N-bis(2-pyridylmethyl)ethylamine; (S)-BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), is described. Complex 2 is characterized in solution through UV-vis, cyclic voltammetry (CV), and 1D and 2D NMR spectroscopy. X-ray diffraction analysis indicates that in the solid state it possesses the same structure as in solution, as expected for a low-spin d(6) Ru(II)-type complex. The molecular structure of cis-fac-Delta-(R)-(S)-2, consists of a nonsymmetric complex, where the Ru metal center has a significantly distorted octahedral-type coordination because of the bulkiness of the (S)-BINAP ligand. cis-fac-Delta-(R)-(S)-2 has a remarkable catalytic performance at P = 6.8 atm of H2 and T = 70 degrees C toward the hydrogenation of prochiral double bonds both from efficiency and from stereoselectivity viewpoints. As an example, prochiral olefins of technological interest such as dimethyl itaconate, methyl 2-acetamidoacrylate or methyl 2-acetamidocinnamate are catalytically hydrogenated by cis-fac-Delta-(R)-(S)-2, with conversions higher than 99.9% and ee > 99. Furthermore, cis-fac-Delta-(R)-(S)-2, also catalyzes the selective hydrogenation of beta-keto esters, although the reaction rates are lower than those found with the former substrates.  相似文献   

9.
[structures: see text] Enantiomerically pure 2-alkyl-3-acetoxy-4-iodopyrrolidines with all groups cis, and all adjacent groups trans (10 and 17), important precursors for the synthesis of pyrrolidinediols, have been prepared from D-tyrosine through regio- and diastereoselective reduction of a vinyl ketone and subsequent iodoamidation controlled by minimization of nonbonding steric interactions. Highly stereodivergent Woodward-Prevost methodology, applied to both iodopyrrolidines, yielded enantiomerically pure (2R,3R,4R)-, (2R,3R,4S)-, and (2R,3S,4R)-deacetylanisomycin (3, 4, and 5), each in excellent de. Incorporation of differential protection of the hydroxyl groups led to a one-pot synthesis of (2R,3R,4R)-anisomycin 2.  相似文献   

10.
用低价钛试剂(TiCl~4-Zn)与α,α-(4-氯苯基)(二氰甲基)甲基苯基酮反应合成了非对映消旋体(3R,5S;3S,5R)和(3R,5R;3S,5S)2-氨基-3-羟基-3-苯基-5-对氯苯基环戊烯-1-腈。并用X射线衍射分析确定了这两个非对映异构体的构型。  相似文献   

11.
Unsaturation was introduced at Delta(4,6) and Delta(6) of the sphingoid chain of naturally occurring ceramide 1 via a beta-keto sulfoxide (12) and sulfone (18) derived from N-Boc-L-serine methyl ester acetonide (9), affording two novel ceramide analogues, (2S,3R)-2-octanoylamidooctadeca-(4E,6E)-diene-1,3-diol (2) and (2S,3R)-2-octanoylamidooctadec-(6E)-ene-1,3-diol (3). After C-alkylation of 12 with (E)-1-bromo-2-tetradecene (8), a trans double bond was installed by elimination of PhS(O)H, providing conjugated dienone oxazolidine 13. Reaction of 18 with 8, followed by desulfonation (Al(Hg)), afforded keto-oxazolidine 20, which bears a (E)-Delta(6) double bond. The syntheses of analogues 2 and 3 from ketones 13 and 20, respectively, were completed by the following sequence of reactions: diastereoselective reduction (NaBH(4)/CeCl(3) or DIBAL-H), hydrolysis of the oxazolidine ring, liberation of the amino group, and installation of the N-amide group.  相似文献   

12.
R-5-Methylcyclohex-2-enone 1 reacts successively with the phenyldimethylsilylzincate reagent and acetaldehyde to give with regiocontrol the aldols 7, dehydration of which creates the E-exocyclic double bond of the alpha,beta-unsaturated ketone 2. Conjugate addition of the ethylcuprate reagent to this compound takes place with high (96:4) selectivity in favour of the R stereoisomer 12, hydrolysis of which gives (2R,3R,5S,2'R)-2-(but-2'-yl)-3-dimethyl(phenyl)silyl-5-methylcyclohexanone 3. The oxime acetate of this ketone undergoes fragmentation in the presence of trimethylsilyl trifluoromethanesulfonate to give 3R,7R,5E-3,7-dimethylnon-5-enonitrile 4, in which an open-chain 1,5-stereochemical relationship is set up with a high level of stereocontrol. A similar sequence adding 4-methylpentylcuprate to the enone 2, and fragmentation gives 3R,7R,5E-3,7,11-trimethyldodec-5-enonitrile 20. Reduction and hydrogenation of this nitrile gives 3R,7R-3,7,11-trimethyldodecanal 22, which can be converted into phytol 25. The ketoaldehyde 29 reacts with samarium iodide to give only the alcohol 30, in which the radical anion has attacked from the top surface just like the cuprate reagents in their reactions with the ketone 2.  相似文献   

13.
A versatile and practical approach for synthesizing azabicyclo[X.Y.0]alkane amino acids of different ring sizes from a common diaminodicarboxylate precursor has been developed as a means for mimicking different peptide conformations. (2S,9S)-1-tert-Butyl 10-benzyl 5-oxo-2-[N-(PhF)amino] 9-[N-(BOC)amino]dec-4-enedioate (18) was first prepared in 83% yield by the Horner-Wadsworth-Emmons olefination of N-(PhF)aspartate beta-aldehyde 8 with pyroglutamate-derived beta-keto phosphonate 12 (PhF = 9-phenylfluoren-9-yl). The practicality of this approach for making azabicyclo[X.Y.0]alkane amino acids was then illustrated by the first synthesis of enantiopure quinolizidin-2-one amino acid 6 in seven steps and 40% overall yield from L-pyroglutamic acid. Hydrogenation of delta-keto alpha,omega-diaminosebacate 18, followed by lactam cyclization and protection, gave quinolizidin-2-one amino acid 6 as a single diastereomer. The versatility of this approach was next demonstrated by the synthesis of both ring-fusion isomers of pyrroloazepin-2-one amino acid 6 in 11 steps and 13% overall yield from pyroglutamic acid. Hydride reduction of 18, followed by methanesulfonate displacement, gave 5-alkylproline 22. Protective group manipulations, lactam cyclization, and removal of the ester group afforded readily separable pyrroloazepinone amino acids (7S)- and (7R)-7 in a 1:2 diastereomeric ratio. By introducing two new azabicycloalkane amino acids using our olefination approach, we have expanded the diversity of these important heterocycles for studying the conformational requirements for peptide biological activity.  相似文献   

14.
The reduction of prochiral ketones catalyzed by Ru(diphosphine)(diamine) complexes has been studied at the DFT-PBE level of theory. Calculations have been conducted on real size systems [trans-Ru(H)2(S, S-dpen)(S-xylbinap) + acetophenone], [trans-Ru(H)2(S, S-dpen)(S-tolbinap) + acetophenone] and [trans-Ru(H)2(S, S-dpen)(S-xylbinap) + cyclohexyl methyl ketone] with the aim of identifying the factors controlling the enantioselectivity in Ru(diphosphine)(diamine) catalysts. The high enantiomeric excess (99%) in the hydrogenation of acetophenone catalyzed by trans-Ru(H)2(S, S-dpen)(S-xylbinap) has been explained in terms of the existence of a stable intermediate along the reaction pathway associated with the (R)-alcohol. The formation of this intermediate is hindered with the competitive pathways, which consequently increases the activation energy for the hydrogen transfer acetophenone/(S)-phenylethanol reaction. For the [trans-Ru(H)2(S, S-dpen)(S-tolbinap) + acetophenone] system, the lower enantioselectivity (i.e. 80%) is rationalized by the smaller differences in the activation energy between the competitive pathways which differentiate between the two diastereomeric approaches of the prochiral ketone. The DFT-PBE results suggest that this reaction is driven to the (R)-product only by the process of binding the acetophenone to the active site of the trans-Ru(H) 2(S, S-dpen)(S-tolbinap) catalyst. For the hydrogenation of cyclohexyl methyl ketone catalyzed by trans-Ru(H)2(S, S-dpen)(S-xylbinap), the low performance in the enantioselective hydrogenation of the dialkyl ketone (i.e. 37%) is again explained by the small differences in the activation and binding energies which are the factors which could effectively differentiate between the two alkyl groups.  相似文献   

15.
A synthesis of the eastern fragment of the thiazole peptide GE2270 A (1) has been developed. The synthetic approach relies on the regioselective functionalization of 2,4-dibromothiazole (5) via metalation and nucleophilic addition (at C2) or palladium-mediated cross-coupling (at C2 or C4). The stereochemistry at the N-bearing stereocenter was established by coupling of 2-metalated 4-bromothiazoles (4) to enantiomerically pure mandelic acid derivatives. Both the erythro (2) and threo (3) configurated amino alcohols were prepared with high diastereoselectivities depending on the electrophile employed. More specifically, the threo-configurated (S,R)-4-bromothiazolyl beta-amino alcohol 6 was synthesized from O-TBS protected (R)-mandelonitrile in 62% yield. Its N-PMB protected (R,S)-enantiomer 20 was obtained from O-TBS protected (S)-mandelic aldehyde in 67% yield. The erythro-configurated (S,S)-4-bromothiazolyl beta-amino alcohol 29 was prepared from O-TBS protected (S)-ethyl mandelate in four steps and 33% overall yield. The bithiazole moiety in the desired products 2 and 3 was finally established by the regioselective Negishi coupling of 2,4-dibromothiazole (5) and the 4-zincated, N-Boc protected thiazole derivatives of the diastereomeric 4-bromothiazolyl beta-amino alcohols 6 and 29.  相似文献   

16.
The kinetics and mechanisms of one-pot cascade reactions of racemic beta-keto esters to give chiral ketones in the presence of Pd/C-chiral amino alcohol catalyst systems were studied. Transformation of 2-methyl-1-tetralone-2-carboxylic acid benzyl ester (1) into 2-methyl-1-tetralone (4) in the presence of Pd/C and cinchona alkaloids or ephedrine was chosen as a model reaction. After the first reaction step, the Pd-catalysed debenzylation of 1 to afford the corresponding beta-keto acid (2), there are two possible reaction routes that may be catalysed by the chiral amino alcohol in solution or by Pd(0) sites on the metal surface in cooperation with the adsorbed amino alcohol. The reaction intermediate 2 was synthesized, and the kinetics of decarboxylation were followed by NMR, UV and IR spectroscopy. The studies revealed that the role of Pd is to trigger the reaction series by deprotection of 1. The subsequent dominant reaction route from the racemic beta-keto acid 2 to the chiral ketone 4 is catalysed by the chiral amino alcohol in the liquid phase. It is shown that kinetic resolution of the diastereomeric salt of rac-2 and the chiral amino alcohol plays a key role in the enantioselection. High enantioselectivity necessitates an amino alcohol/rac-2 ratio of at least 2. A high ratio favours the formation of 1:1 amino alcohol/acid diastereomeric complexes, and the second amino alcohol molecule may be responsible for the enantioselective protonation of 2 in the diastereomeric complex.  相似文献   

17.
The reaction between 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and 2-(aminomethyl)pyridine, or its salts with carboxylic acids, was found to produce a mixture of diastereomeric 2-(2′-pyridyl)-3-hydroxy-3,5-bis-trifluoromethyl-1-pyrrolines with high (up to 85% de) of kinetic (3R*,5S*)-diastereoselectivity. The thermodynamic (3R*,5R*) diastereomer was prepared as a major product (90% de) by epimerization of the kinetic (3R*,5S*) diastereomer with triethylamine.  相似文献   

18.
This paper describes the synthesis of chiral methanols [(R)- and (S)-CHDTOH] in a total of 12 steps starting from (chloromethyl)dimethylphenylsilane. The metalated carbamates derived from (dimethylphenylsilyl)methanol and secondary amines were borylated at low temperatures (-78 or -94 degrees C) using borates derived from tert-butyl alcohol and (+)-pinane-2,3-diol or (R,R)-1,2-dicyclohexylethane-1,2-diol to give diastereomeric boronates (dr 1:1 to 5:1). The carbamoyloxy group could be replaced smoothly with inversion of configuration by an isotope of hydrogen using LiAlH(D)4 [or LiBEt3H(D,T)]. If the individual diastereomeric boronates were reduced with LiAlD4 and oxidized with H2O2/NaHCO3, monodeuterated (dimethylphenylsilyl)methanols of ee > 98% resulted. The absolute configurations of the boronates were based on a single-crystal X-ray structure analysis. Brook rearrangement of the enantiomers of (dimethylphenylsilyl)-[(2)H1,(3)H]methanol prepared similarly furnished the chiral methanols which were isolated as 3,5-dinitrobenzoates in 81% and 90% yield, respectively. For determination of the enantiomeric excesses (98%), the methyl groups were transferred to the nitrogen of (S)-2-methylpiperidine and (3)H{(1)H} NMR spectra were recorded. The Brook rearrangement is a stereospecific process following a retentive course. The chiral methanols were also transformed into methyl tosylates used to prepare [(2)H1,(3)H-methyl]methionines in high overall yields (>80%).  相似文献   

19.
Lee CT  Lipshutz BH 《Organic letters》2008,10(19):4187-4190
An efficient method for the synthesis of nonracemic diarylmethanols has been developed. The use of ( R)-(-)-(DTBM-SEGPHOS)CuH effects highly enantioselective 1,2-hydrosilylation of prochiral diaryl ketones.  相似文献   

20.
[reaction: see text] A new method for the one-pot asymmetric reductive amination of prochiral aliphatic ketones has been developed. The previously unexplored reagent combination of Ti(O(i)Pr)(4)/Raney Ni/H(2) in the presence of (R)- or (S)-alpha-methylbenzylamine provides good to excellent yield (76-90%) and diastereomeric excess (72-98%). The second step, hydrogenolysis, provides the corresponding primary amine in high yield (88-93%) and with uncompromised enantiomeric excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号