首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

2.
This paper reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amine-tethered unactivated 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]SmCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and good to excellent yield. In addition, chiral C(1)-symmetric organolanthanide catalysts of the type [Me(2)Si(OHF)(CpR*)]LnN(TMS)(2) (OHF = eta(5)-octahydrofluorenyl; Cp = eta(5)-C(5)H(3); R* = (-)-menthyl; Ln = Sm, Y), and [Me(2)Si(eta(5)-Me(4)C(5))(CpR*)]SmN(TMS)(2) (Cp = eta(5)-H(3)C(5); R* = (-)-menthyl) mediate asymmetric intramolecular hydroamination/cyclization of amines bearing internal olefins and afford chiral 2-substituted piperidine and pyrrolidine in enantioselectivities as high as 84:16 er at 60 degrees C. The substrate of the structure NH(2)CH(2)CMe(2)CH(2)CH=CH(CH(2))(2)CH=CH(2) is regiospecifically bicyclized by [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) to the corresponding indolizidine skeleton in good yield and high diastereoselectivity. Thermolysis of (eta(5)-Me(5)C(5))(2)LaCH(TMS)(2) in cyclohexane-d(12) at 120 degrees C rapidly releases CH(2)(SiMe(3))(2) and leads to possible formation of fulvene (eta(6)-Me(4)C(5)CH(2)-) species. The thermolysis product readily reverts to active catalysts upon protonolysis by substrate and exhibits the same catalytic activity as the (eta(5),eta(1)-Me(5)C(5))(2)LaCH(TMS)(2) precatalyst at 120 degrees C in the cyclization of cis-2,2-dimethylhept-5-enylamine. Catalytically-active lanthanide-amido complexes (eta(5)-Me(5)C(5))(2)La(NHR)(NH(2)R)(n) and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]Sm(NHR)(NH(2)R)(n) are shown to be thermally robust species.  相似文献   

3.
Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).  相似文献   

4.
The photoredox-catalyzed coupling of N-aryltetrahydroisoquinoline and Michael acceptors was achieved using Ru(bpy)(3)Cl(2) or [Ir(ppy)(2)(dtb-bpy)]PF(6) in combination with irradiation at 455 nm generated by a blue LED, demonstrating the trapping of visible light generated α-amino radicals. While intermolecular reactions lead to products formed by a conjugate addition, in intramolecular variants further dehydrogenation occurs, leading directly to 5,6-dihydroindolo[2,1-a]tetrahydroisoquinolines, which are relevant as potential immunosuppressive agents.  相似文献   

5.
The treatment of 4-[(5E)-6-methoxycarbonyl-5-hexenyl]-3, 4-dimethyl-2-cyclopenten-1-one (5) with LHMDS, TMSI-HMDS, Bu(2)OTf-HMDS, or TMSCl-NEt(3)-ZnCl(2) caused the intramolecular double Michael addition to afford tricyclo[6.3.0.0(3, 9)]undecan-10-one 12 in high yields with perfect stereoselectivity. The methodology was further elaborated to achieve efficient total syntheses of (+/-)-culmorin (1) and (+/-)-longiborneol (2). The common precursor 13 of them was obtained from 14 in 94% yield as a single isomer by the treatment with LHMDS. After the conversion of 13 into the corresponding acid 24 by hydrolysis, oxidative decarboxylation using S-(1-oxido-2-pyridinyl)-1,1,3, 3-tetramethylthiouronium hexafluorophosphate (HOTT, 27), followed by the Birch reduction, stereoselectively afforded (+/-)-culmorin (1). (+/-)-Longiborneol (2) was synthesized from 24 by the standard transformation. Additionally, the treatment of 24 with Pb(OAc)(4) led to 28 via uncommon migration. Its structure was determined by X-ray analysis after the transformation into the diketone 29.  相似文献   

6.
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).  相似文献   

7.
Ryu JS  Marks TJ  McDonald FE 《Organic letters》2001,3(20):3091-3094
[reaction: see text] This contribution reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amines tethered to 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines by using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]NdCH(TMS)(2), [Et(2)Si(eta(5)-Me(4)C(5))(eta(5)-C(5)H(4))]NdCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)()BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and in good to excellent yield.  相似文献   

8.
A novel tris heteroleptic dipyridophenazine complex of ruthenium(II), [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, containing a covalently tethered ruthenium pentammine quencher coordinated through a bridging histidine has been synthesized and characterized spectroscopically and biochemically in a DNA environment and in organic solvent. Steady-state and time-resolved luminescence measurements indicate that the tethered Ru complex is quenched relative to the parent complexes [Ru(phen)(dppz)(bpy')]2+ and [Ru(phen)(dppz)(bpy'-his)]2+ in DNA and acetonitrile, consistent with intramolecular photoinduced electron transfer. Intercalated into guanine-containing DNA, [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, upon excitation and intramolecular quenching, is capable of injecting charge into the duplex based upon the EPR detection of guanine radicals. DNA-mediated charge transport is also indicated using a kinetically fast cyclopropylamine-substituted base as an electron hole trap. Guanine damage is not observed, however, in measurements using the guanine radical as the kinetically slower hole trap, indicating that back electron-transfer reactions are competitive with guanine oxidation. Moreover, transient absorption measurements reveal a novel photophysical reaction pathway for [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+ in the presence of DNA that is competitive with the intramolecular flash-quench process. These results illustrate the remarkably rich redox chemistry that can occur within a bimolecular ruthenium complex intercalated in duplex DNA.  相似文献   

9.
The reaction between the nitrile complex trans-[PtCl(4)(EtCN)(2)] and benzohydroxamic acids RC(6)H(4)C([double bond]O)NHOH (R = p-MeO, p-Me, H, p-Cl, o-HO) proceeds smoothly in CH(2)Cl(2) at approximately 45 degrees C for 2-3 h (sealed tube) or under focused 300 W microwave irradiation for approximately 15 min at 50 degrees C giving, after workup, good yields of the imino complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] which derived from a novel metalla-Pinner reaction. The complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] were characterized by elemental analyses (C, H, N), FAB mass spectrometry, and IR and (1)H and (13)C[(1)H] spectroscopies, and [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(Ph)](2)] (as the bis-dimethyl sulfoxide solvate), by X-ray single-crystal diffraction. The latter disclosed its overall trans-configuration with the iminoacyl species in the hydroximic tautomeric form in E-configuration which is held by N[bond]H...N hydrogen bond between the imine [double bond]NH atom and the hydroximic N atom.  相似文献   

10.
The arene ligand in the complex TpRe(CO)(MeIm)(eta2-benzene) (Tp = hydridotris(pyrazolyl)borate; MeIm = N-methylimidazole) undergoes tandem electrophile/nucleophile 1,4-addition reactions. Subsequent oxidative demetalation affords cis-3,6-disubstituted 1,4-cyclohexadienes (46-84%). Common organic electrophiles such as acetals and Michael acceptors were successfully added to the bound benzene to generate eta3-benzenium complexes, which then were treated with a silyl ketene acetal, silyl vinyl ether, phenyllithium, or malonate ester to afford 1,4-dialkylated dihydrobenzene complexes. The d6 transition metal analogues TpW(NO)(PMe3)(eta2-benzene) and [Os(NH3)5(eta2-benzene)]2+ also undergo 1,4-dialkylation reactions, and the relative ability of all three metals to activate arenes is compared.  相似文献   

11.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

12.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

13.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

14.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

15.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

16.
The title compound 1 was found to behave as an attractive masked bis-diene to give 4-oxatricyclo[4.3.1.0(3,7)]dec-8-ene, 5-aza- and 5-silatricyclo[5.3.1.0(3,8)]undec-9-ene, tricyclo[3.2.1.0(2, 7)]oct-3-ene, and tricyclo[5.3.1.0(3,8)]undec-9-ene derivatives through purely pericyclic, three-step homodomino processes with diverse bis-dienophiles; whereas the reaction with myrcene (21) was characterized by a complete sitoselectivity affording compound 25, treatment of 1 with (R)-(-)-beta-citronellene (26a) gave a 3:1 mixture of the homochiral diastereomers 30a and 31a. Some limits of this methodology, mainly arising from competitive side reactions upon the key cyclohexa-1,3-diene intermediates, are emphasized. The structures of the new compounds were established on the basis of spectral data.  相似文献   

17.
Cascade reactions are useful methods for the construction of polycyclic skeletons, which are important cores for biological activities. A variety of cascade reactions carried out under multiple reaction conditions, such as pericyclic, polar, radical, and transition metal-catalyzed reaction conditions, have been investigated. Culmorin, pentalenene, pentalenic acid, deoxypentalenic acid, longiborneol, cedrandiol, 8,14-cedranoxide, atisirene, atisine, and estrane-type steroids were synthesized via the intramolecular double Michael reaction. Aza double Michael reaction was applied to the syntheses of tylophorine, epilupinine, tacamonine, and paroxetine. Furthermore, sequential Michael and aldol reactions were performed in both intramolecular and intermolecular manners, leading to the formation of polycyclic compounds fused to a four-membered ring. Synthesis of paesslerin A utilizing a multicomponent cascade reaction revealed an error in the proposed structure. Unique cascade reactions carried out under radical and transition metal-catalyzed reaction conditions were also investigated. With the combination of several cascade reactions, serofendic acids and methyl 7beta-hydroxykaurenoate, both of which have neuroprotective activity, were synthesized in a selective manner.  相似文献   

18.
In contrast to the reactions of Sn(NMe(2))(2) with unfunctionalized primary amines (RNH(2)), which yield the simple imido Sn(II) cubanes [SnNR](4), the reactions of 2-pyridyl or 2-pyrimidinyl amines give the mixed-oxidation-state Sn(II)/Sn(IV) double cubanes [Sn(7)(NR)(8)]. In addition to [Sn(7)[2-N(5-Mepy)](8)] x 2thf (1 x 2thf) (py = pyridine) and [Sn(7)[2-N(pm)](8)] x 0.33thf (2 x 0.33thf) (pm = pyrimidine), which were communicated previously, the syntheses and structures of the new complexes [Sn(7)[2-N(4-Mepm)](8)] x 2thf (3 x 2thf), [Sn(7)[2-N(4,6-Me(2)pm)](8)] x 4thf (4 x 4thf), [Sn(7)[2-N(4-Me-6-MeO-pm)](8)] (5), and [Sn(7)[2-N(4-MeO-6-MeO-pm)](8)] (6) are reported. Model DFT calculations on the reactions of Sn(NMe(2))(2) with 2-pmNH(2) or PhNH(2), producing the cubanes [Sn[2-N(pm)]](4) and [SnNPh](4) (respectively), and the corresponding double cubanes [Sn(7)[2-N(pm)](8)] and [Sn(7)(NPh)(8)], show that the presence of intramolecular Sn...N bonding which spans the cubane halves of the complexes is crucial to the formation of the double-cubane structure.  相似文献   

19.
The enthalpies of formation [Delta(g)] of tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),10(14),11-heptaene (2, 1,2-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1-ene) and tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),8,10(14),11-octaene (3, 1,2,9,10-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1,9-diene) have been determined by measuring their heats of combustion in a microcalorimeter and their heats of sublimation by the transpiration method. Values of the strain energies (SE) [SE(2) = 34.7 kcal mol(-)(1), SE(3) = 42.0 kcal mol(-)(1)] have been derived from the gas-phase heats of formation and are compared with those from MM3 and PM3 calculations and with the corresponding value SE(1) = 30.1 kcal mol(-)(1) for the parent tricyclo[8.2.2.2(4,7)]hexadeca-1(13),4(16),5,7(15),10(14),11-hexaene (1, [2.2]paracyclophane). The higher strain energies of 2 and 3 (by 4.6 and 11.9 kcal mol(-)(1)) are in accord with the well-known increased reactivities of their aromatic rings as a consequence of their increased bending. As revealed by an X-ray crystal structure analysis, the bending in the monoene 2 corresponds to that of 1 and 3 at one of two bridging corners.  相似文献   

20.
Xu X  Zhang Z  Yao Y  Zhang Y  Shen Q 《Inorganic chemistry》2007,46(22):9379-9388
A series of neutral and anionic bis(phenolate) lanthanide amides were synthesized by general metathesis reactions, and their reactivity was explored. Protolytic ligand exchange reactions of MBMPH2 (MBMP = 2,2'-methylene bis(6-tert-butyl-4-methyl-phenolate)) with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 (TMS = SiMe3) afforded the desired bridged bis(phenolate) lanthanide chlorides [(MBMP)Ln(mu-Cl)(THF)2]2 [Ln = Nd (1), Yb (2)] in high isolated yields. These lanthanide chlorides were found to be useful precursors for the synthesis of the corresponding lanthanide derivatives. Reactions of 1 and 2 with 2 equiv of NaN(TMS)2 in THF produced the expected neutral bis(phenolate) lanthanide amido complexes (MBMP)Ln[N(TMS)2](THF)2 [Ln = Nd (3), Yb (4)] in high yields. Whereas the reactions of 1 and 2 with LiN(TMS)2 in a 1:4 molar ratio gave the anionic bis(phenolate) lanthanide amides as discrete ion-pair complexes [Li(THF)4][(MBMP)Ln{N(TMS)2}2] [Ln = Nd (5), Yb (6)] in high isolated yields. Further study revealed that 5 and 6 can also be conveniently synthesized in high yields by the direct reactions of MBMPH2 with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 in a 2:1 molar ratio, and then with 4 equiv of nBuLi. The reactivity of the neutral and anionic bis(phenolate) lanthanide amides was comparatively investigated. It was found that the insertion reactions of carbodiimide into the Ln-N bond of neutral lanthanide amido complexes 3 and 4 gave the anticipated bis(phenolate) lanthanide guanidinate complexes [(mu-O-MBMP)Nd{(iPrN)2CN(TMS)2}]2 (7) and (MBMP)Yb[(iPrN)2CN(TMS)2] (8), respectively, in high yields, whereas the similar reaction of carbodiimide with anionic amido complex 5 provided the unexpected ligand-redistributed products, and the homoleptic ion-pair bis(phenolate) neodymium complex [Li(DME)2(THF)][(MBMP)2Nd(THF)2] (9) was finally isolated as one of the products. Furthermore, the anionic bis(phenolate) lanthanide amides showed higher catalytic activity for the polymerization of epsilon-caprolactone than the neutral ones. All of the complexes were characterized with elemental analysis and IR spectra, and the definitive molecular structures of 1-3 and 5-9 were provided by single-crystal X-ray analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号