首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dialkyl and diaryl sulfoxides are oxidized to sulfones by hydrogen peroxide using methyltrioxorhenium as the catalyst. The reaction rate is negligible without a catalyst. The kinetics study was performed in CH3CN-H2O (4:1 v/v) at 298 K with [H+] at 0.1 M, conditions which make the equilibration between MTO and its peroxo complexes more rapid than the oxygen-transfer step. The values for the rate constant for the oxygen-transfer step lie in the range 0.1-3 L mol-1 s-1. The rate constants were significantly smaller than for the oxidation of sulfides to sulfoxides. A study of ring-substituted diaryl sulfoxides yielded kinetics results that are consistent with nucleophilic attack of the sulfur atom on the peroxide oxygen group since rho = -0.65. The results cited refer to the reactions of the diperoxo from the catalyst, MeRe(O)(eta 2-O2)2H2O. The monoperoxo complex showed no measurable reactivity toward sulfoxides, in contrast with the situation for nearly every other substrate. That unusual finding suggests a hydrogen-bonded interaction between the substrate and the diperoxorhenium compound which cannot exist with the monoperoxo compound.  相似文献   

2.
Organic disulfides with both alkyl and aryl substituents are oxidized by hydrogen peroxide when CH(3)ReO(3) (MTO) is used as a catalyst. The first step of the reaction is complete usually in about an hour, at which point the thiosulfinate, RS(O)SR, can be detected in nearly quantitative yield. The thiosulfinate is then converted, also by MTO-catalyzed oxidation under these conditions, to the thiosulfonate and, over long periods, to sulfonic acids, RSO(3)H. In the absence of excess peroxide, RS(O)SR (R = p-tolyl), underwent disproportionation to RS(O)(2)SR and RSSR. Kinetics studies of the first oxidation reaction established that two peroxorhenium compounds are the active forms of the catalyst, CH(3)ReO(2)(eta(2)-O(2)) (A) and CH(3)ReO(eta(2)-O(2))(2).(OH(2)) (B). Their reactivities are similar; typical rate constants (L mol(-)(1) s(-)(1), 25 degrees C, aqueous acetonitrile) are k(A) = 22, k(B) = 150 (Bu(2)S(2)) and k(A) = 1.4, k(B) = 11 (Tol(2)S(2)). An analysis of the data for (p-XC(6)H(4))(2)S(2) by a plot of log k(B) against the Hammett sigma constant gave rho = -1.89, supporting a mechanism in which the electron-rich sulfur attacks a peroxo oxygen of intermediates A and B.  相似文献   

3.
Methyltrioxorhenium (MTO)-catalyzed epoxidation of alkenes with H(2)O(2) has been significantly improved by using 3-methylpyrazole as an additive. A system consisting of 35% H(2)O(2) and MTO-3-methylpyrazole in CH(2)Cl(2) catalyzes the epoxidation of various alkenes in excellent yields. The catalytic activity of MTO-3-methylpyrazole surpasses MTO-pyrazole and MTO-pyridine catalysts. Quantitative yields of epoxides from cyclic and internal alkenes were obtained with only 0.05-0.1 mol% of MTO in the presence of 10 mol% of 3-methylpyrazole.  相似文献   

4.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

5.
A comparative analysis of predictive ability of three approaches to estimate the rate constants of reactions of H(2), H, H(2)O and CH(4) with electronically excited O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) molecules is conducted. The first approach is based on a detailed ab initio study of potential energy surfaces. The second one is known as the "bond energy-bond order" method, and the third approach is a modification of the updated method of vibronic terms that makes it possible to evaluate the activation energy of reactions involving electronically excited species. The comparison showed that the estimates of the energy barrier by the updated method of vibronic terms for some reactions can be in good agreement with ab initio calculations and available experimental data. It was revealed that reactions of O(2)(b(1)Σ(g)(+)) molecules with H(2), H(2)O and CH(4) molecules and with the H atom result in the formation of electronically excited species. The reactivity of O(2)(b(1)Σ(g)(+)) molecules is smaller than that of O(2)(a(1)Δ(g)) ones, but much higher as compared to the reactivity of ground state O(2) molecules. For each reaction under study involving oxygen molecules in the excited electronic states O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) the recommended temperature-dependent rate constants are presented.  相似文献   

6.
The adducts formed between the antitumor active compounds [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), Rh(2)(O(2)CCH(3))(4), and Rh(2)(O(2)CCF(3))(4) with DNA oligonucleotides have been assessed by matrix-assisted laser desorption ionization (MALDI) and nanoelectrospray (nanoESI) coupled to time-of-flight mass spectrometry (TOF MS). A series of MALDI studies performed on dipurine (AA, AG, GA, and GG)-containing single-stranded oligonucleotides of different lengths (tetra- to dodecamers) led to the establishment of the relative reactivity cis-[Pt(NH(3))(2)(OH(2))(2)](2+) (activated cisplatin) approximately Rh(2)(O(2)CCF(3))(4) > cis-[Pt(NH(3))(2)Cl(2)] (cisplatin) > [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) > Rh(2)(O(2)CCH(3))(4) approximately Pt(C(6)H(6)O(4))(NH(3))(2) (carboplatin). The relative reactivity of the complexes is associated with the lability of the leaving groups. The general trend is that an increase in the length of the oligonucleotide leads to enhanced reactivity for Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) and Rh(2)(O(2)CCH(3))(4) (except for the case of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+), which reacts faster with the GG octamers than with the dodecamers), whereas the reactivity of Rh(2)(O(2)CCF(3))(4) is independent of the oligonucleotide length. When monitored by ESI, the dodecamers containing GG react faster than the respectiveAA oligonucleotides in reactions with Rh(2)(O(2)CCF(3))(4) and Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), whereas AA oligonucleotides react faster with Rh(2)(O(2)CCH(3))(4). The mixed (AG, GA) purine sequences exhibit comparable rates of reactivity with the homopurine (AA, GG) dodecamers in reactions with Rh(2)(O(2)CCH(3))(4). The observation of initial dirhodium-DNA adducts with weak axial (ax) interactions, followed by rearrangement to more stable equatorial (eq) adducts, was achieved by electrospray ionization; the Rh-Rh bond as well as coordinated acetate or acetonitrile ligands remain intact in these dirhodium-DNA adducts. MALDI in-source decay (ISD), collision-induced dissociation (CID) MS-MS, and enzymatic digestion studies followed by MALDI and ESI MS reveal that, in the dirhodium compounds studied, the purine sites of the DNA oligonucleotides interact with the dirhodium core. Ultimately, both MALDI and ESI MS proved to be complementary, valuable tools for probing the identity and stability of dinuclear metal-DNA adducts.  相似文献   

7.
The kinetics of the oxidation of substituted phenyl methyl sulfides by hydrogen peroxide in borate/boric acid buffers were investigated as a function of pH, total peroxide concentration, and total boron concentration. Second-order rate constants at 25 degrees C for the reaction of methyl 4-nitrophenyl sulfide and H(2)O(2), monoperoxoborate, HOOB(OH)(3) (-), or diperoxoborate, (HOO)(2)B(OH)(2) (-), are 8.29 x 10(-5), 1.51 x 10(-2) and 1.06 x 10(-2) M(-1) s(-1), respectively. Peroxoboric acid, HOOB(OH)(2), is unreactive. The Hammett rho values for the reactions of a range of substituted phenyl methyl sulfides and hydrogen peroxide, monoperoxoborate or diperoxoborate are -1.50 +/- 0.1, -0.65 +/- 0.07 and -0.48 (two points only), respectively. The rho values for the peroxoborates are of significantly lower magnitude than expected from their reactivity compared to other peroxides. Nevertheless the negative rho values indicate positive charge development on the sulfur atom in the transition state consistent with nucleophilic attack by the organic sulfides on the peroxoborates as with the other peroxides. The kinetic parameters, including the lack of reactivity of peroxoboric acid, are discussed in terms of the differences in the transition state of reactions involving peroxoboron species with respect to those of other peroxides.  相似文献   

8.
The reactivity of the peroxymonocarbonate ion, HCO4- (an active oxidant derived from the equilibrium reaction of hydrogen peroxide and bicarbonate), has been investigated in the oxidation of aliphatic amines. Tertiary aliphatic amines are oxidized to the corresponding N-oxides in high yields, while secondary amines give corresponding nitrones. A closely related mechanism for the H2O2 oxidation of tertiary amines catalyzed by CO2 (under 1 atm) and H2O2 at 25 degrees C is proposed. The rate laws for the oxidation of N-methylmorpholine (1) to N-methylmorpholine N-oxide and N,N-dimethylbenzylamine (2) to N,N-dimethylbenzylamine N-oxide have been obtained. The second-order rate constants for the oxidation by HCO4- are k1 .016 M(-1) s(-1) for 1 in water and k1=0.042 M(-1) s(-1) for 2 in water/acetone (5:1). The second-order rate constants for tertiary amine oxidations by HCO4- are over 400-fold greater than those for H2O2 alone. Activation parameters for oxidation of 1 by HCO4- in water are reported (DeltaH=36+/-2 kJ mol(-1) and DeltaS=-154+/-7 J mol(-1) K(-1)). The BAP (NH4HCO3-activated peroxide) or CO2/H2O2 oxidation reagents are simple and economical methods for the preparation of tertiary amine N-oxides. The reactions proceed to completion, do not require extraction, and afford the pure N-oxides in excellent yields in aqueous media.  相似文献   

9.
Bare vanadium oxide and hydroxide cluster cations, V(m)O(n)+ and V(m)O(n-1) (OH)+ (m = 1-4, n = 1-10), generated by electrospray ionization, were investigated with respect to their reactivity toward methanol using mass spectrometric techniques. Several reaction channels were observed, such as abstraction of a hydrogen atom, a methyl radical, or a hydroxymethyl radical, elimination of methane, and adduct formation. Moreover, dehydrogenation of methanol to generate formaldehyde was found to occur via four different pathways. Formaldehyde was released as a free molecule either upon transfer of two hydrogen atoms to the cluster or upon transfer of an oxygen atom from the cluster to the neutral alcohol concomitant with elimination of water. Further, formaldehyde was attached to V(m)O(n)+ upon loss of H2 or neutral water to produce the cation V(m)O(n)(OCH(2))+ or V(m)O(n-1) (OCH(2))+, respectively. A reactivity screening revealed that only high-valent vanadium oxide clusters are reactive with respect to H2 uptake, oxygen transfer, and elimination of H2O, whereas smaller and low-valent cluster cations are capable of dehydrogenating methanol via elimination of H2. For comparison, the reactivity of methanol with the corresponding hydroxide cluster ions, V(m)O(n-1) (OH)+, was studied also, for which dominant pathways lead to both condensation and association products, i.e., generation of the ions V(m)O(n-1) (OCH(3))+ and V(m)O(n-1) (OH)(CH(3)OH)+, respectively.  相似文献   

10.
We present herein a high yield, highly selective catalytic synthesis of vinylboronate esters (VBEs), including 1,1-disubstituted VBEs, from alkenes without significant hydrogenation or hydroboration, using the simple catalyst precursor, trans-[RhCl(CO)(PPh3)2] (1), and the diboron reagents B2pin2 (2a, pin = pinacolato = OCMe2CMe2O) or B2neop2 (2b, neop = neopentylglycolato = OCH2CMe2CH2O), or the monoboron reagent HBpin, all of which are commercially available. The reactions were conducted at 80 degrees C using conventional heating, or in a microwave reactor at 150 degrees C.  相似文献   

11.
The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area.  相似文献   

12.
[reaction: see text] Highly efficient C2 selective substitution reactions of 2,3-epoxy alcohols with nucleophiles were developed by using NaN(3)-(CH(3)O)(3)B, NaSPh-(CH(3)O)(3)B, or NaCN-(C(2)H(5)O)(3)B system. The reaction proceeds through novel endo-mode epoxide opening of an intramolecular boron chelate, which was suggested from both experimental and quantum mechanic studies.  相似文献   

13.
Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)-peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+), were synthesized by reacting [Co(12-TMC)(CH(3)CN)](2+) and [Co(13-TMC)(CH(3)CN)](2+), respectively, with H(2)O(2) in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η(2) fashion. The O-O bond stretching frequency of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) was determined to be 902 cm(-1) by resonance Raman spectroscopy. The structural properties of the CoO(2) core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) were 1.4389(17) ? and 1.438(6) ?, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O(2)-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O(2))](+) > [Co(12-TMC)(O(2))](+). In the O(2)-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)-peroxo complexes. The reactivity of the cobalt-peroxo complexes in O(2)-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O(2)-transfer reactions was the same as that observed in the aldehyde oxidation reactions.  相似文献   

14.
The oxygenation of carbon-carbon double bonds by iron enzymes generally results in the formation of epoxides, except in the case of the Rieske dioxygenases, where cis-diols are produced. Herein we report a systematic study of olefin oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, i.e., [Fe(II)(BPMEN)(CH(3)CN)(2)](2+) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and [Fe(II)(TPA)(CH(3)CN)(2)](2+) (4, TPA = tris(2-pyridylmethyl)amine) and their 6- and 5-methyl-substituted derivatives. We demonstrate that olefin epoxidation and cis-dihydroxylation are different facets of the reactivity of a common Fe(III)-OOH intermediate, whose spin state can be modulated by the electronic and steric properties of the ligand environment. Highly stereoselective epoxidation is favored by catalysts with no more than one 6-methyl substituent, which give rise to low-spin Fe(III)-OOH species (category A). On the other hand, cis-dihydroxylation is favored by catalysts with more than one 6-methyl substituent, which afford high-spin Fe(III)-OOH species (category B). For catalysts in category A, both the epoxide and the cis-diol product incorporate (18)O from H(2)(18)O, results that implicate a cis-H(18)O-Fe(V)=O species derived from O-O bond heterolysis of a cis-H(2)(18)O-Fe(III)-OOH intermediate. In contrast, catalysts in category B incorporate both oxygen atoms from H(2)(18)O(2) into the dominant cis-diol product, via a putative Fe(III)-eta(2)-OOH species. Thus, a key feature of the catalysts in this family is the availability of two cis labile sites, required for peroxide activation. The olefin epoxidation and cis-dihydroxylation studies described here not only corroborate the mechanistic scheme derived from our earlier studies on alkane hydroxylation by this same family of catalysts (Chen, K.; Que, L, Jr. J. Am. Chem. Soc. 2001, 123, 6327) but also further enhance its credibility. Taken together, these reactions demonstrate the catalytic versatility of these complexes and provide a rationale for Nature's choice of ligand environments in biocatalysts that carry out olefin oxidations.  相似文献   

15.
The E(CO)2 elimination reactions of alkyl hydroperoxides proceed via abstraction of an alpha-hydrogen by a base: X(-) + R(1)R(2)HCOOH --> HX + R(1)R(2)C=O + HO(-). Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO(-) + CH3OOH, HO(-) + CD3OOH, and H(18)O(-) + CH3OOH, the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO(-) are the exclusive pathways observed for (CH3)3COOH, which has no alpha-hydrogen. All results are consistent with the E(CO)2 mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO(-) + CH3OOH also reveals some interaction between H2O and HO(-) within the E(CO)2 product complex [H2O...CH2=O...HO(-)]. There is little evidence, however, for the formation of the most exothermic products H2O + CH2(OH)O(-), which would arise from nucleophilic condensation of CH2=O and HO(-). The results suggest that the product dynamics are not totally statistical but are rather direct after the E(CO)2 transition state. The larger HO(-) + CH3CH2OOH system displays more statistical behavior during complex dissociation.  相似文献   

16.
Transition metal-benzyne complexes have found many applications in organic synthesis, mechanistic studies, and the synthesis of functional materials. In sharp contrast, the reaction chemistry of transition metal-carboryne complexes is virtually unknown although the theoretical calculations indicated that the formation of carboryne (1,2-C2B10H10) and benzyne is very energetically comparable. This communication reports a novel zirconocene-carboranyl complex Cp2Zr(mu-Cl)(mu-C2B10H10)Li(OEt2)2 (1), an efficient precursor of the zirconocene-carboryne species, prepared from the reaction of Cp2ZrCl2 with 1 equiv of Li2C2B10H10 in Et2O. The reactivity studies indicated that 1 resembles zirconocene-benzyne in reactions with polar unsaturated organic molecules. On the other hand, it shows no reactivity toward alkynes and alkenes, a reactivity pattern which is quite different from that of zirconocene-benzyne. This work also furnishes a novel method for the preparation of functional o-carboranes and their metal complexes which cannot be synthesized by other methods presently known.  相似文献   

17.
A general method for the synthesis of cage-carbon-functionalized cyclopentadienyl iron and cyclopentadienyl ruthenium tricarbadecaboranyl complexes has been developed that employs palladium-catalyzed Sonogashira, Heck, and Stille cross-coupling reactions directed at a cage-carbon haloaryl substituent. The key Li(+)[6-(p-XC(6)H(4))-nido-5,6,9-C(3)B(7)H(9)(-)] (X = I (1), Br (2), Cl (3)) haloaryl-tricarbadecaboranyl anionic ligands were synthesized in high yields via the reaction of the arachno-4,6-C(2)B(7)H(12)(-) anion with the corresponding p-halobenzonitriles (p-XC(6)H(4)-CN). The reactions of the salts 1-3 with (η(5)-C(5)H(5))Fe(CO)(2)I and (η(5)-C(5)H(5))Ru(CH(3)CN)(3)PF(6) were then used to produce the haloaryl complexes 1-(η(5)-C(5)H(5))-2-(p-XC(6)H(4))-closo-1,2,3,4-MC(3)B(7)H(9) (M = Fe, X = I (4), Br (5), Cl (6) and M = Ru, X = I (7), Br (8), Cl (9)). The sonication-promoted Sonogashira coupling reactions of 4 with terminal alkynes catalyzed by Pd(dppf)(2)Cl(2)/CuI yielded the alkynyl-linked derivatives 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhC≡C)- (10), (CH(3)CH(2)C(O)OCH(2)C≡C)- (11), ((η(5)-C(5)H(5))Fe(η(5)-C(5)H(4)C≡C))- (12)). Heck reactions of 4 with terminal alkenes catalyzed by Pd(OAc)(2) yielded the alkene-functionalized products 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhCH(2)CH═CH)- (13), (CH(3)(CH(2))(2)CH═CH)- (14)), while the Stille cross-coupling reactions of 4 with organotin compounds catalyzed by Pd(PPh(3))(2)Cl(2) afforded the complexes 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = Ph- (15), (CH(2)═CH)- (16), (CH(2)═CHCH(2))- (17)). These reactions thus provide facile and systematic access to a wide variety of new types of functionalized metallatricarbadecaboranyl complexes with substituents needed for potential metallocene-like biomedical and/or optoelectronic applications.  相似文献   

18.
The first productive reactions of a characterized metallacyclobutene complex with alkenes are reported. Thus, the metallacyclobutene complex (eta5-C5H5)(PPh3)Co[kappa2-(C,C)-C(SO2Ph) C(Si(CH3)3)CH(CO2CH2CH3)] (2) undergoes reaction with alkenes to give 1,4-diene complexes with a high degree of regio- and stereoselectivity. A mechanism is proposed in which the metallacyclobutene generates a cyclic vinylcarbene intermediate that undergoes [4 + 2]-cycloaddition reactions with activated alkenes. A model of the vinylcarbene intermediate has been examined using quantum mechanical methods.  相似文献   

19.
Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. M?ller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of water in methanol is about two, with the water molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the central water molecule, have characteristics similar to those of the methane molecules around a central water molecule in the H(2)O...(CH(4))(10) cluster. The ab initio quantum mechanical methods employed in this paper have provided detailed information about the H bonds in the clusters investigated. In particular, they provided full information about two types of H bonds between water and methanol molecules (in which the water or the methanol molecule is the proton donor), including information about their energies and lengths. The average numbers of the two types of H bonds in the CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10) clusters have been calculated. Such information could hardly be obtained with the simulation methods.  相似文献   

20.
Density functional theory (DFT), CCSD(T), and CBS-QB3 calculations were performed to understand the chemical and reactivity differences between acetylnitrene (CH(3)C(=O)N) and methoxycarbonylnitrene (CH(3)OC(=O)N) and related compounds. CBS-QB3 theory alone correctly predicts that acetylnitrene has a singlet ground state. We agree with previous studies that there is a substantial N-O interaction in singlet acetylnitrene and find a corresponding but weaker interaction in methoxycarbonylnitrene. Methoxycarbonylnitrene has a triplet ground state because the oxygen atom stabilizes the triplet state of the carbonyl nitrene more than the corresponding singlet state. The oxygen atom also stabilizes the transition state of the Curtius rearrangement and accelerates the isomerization of methoxycarbonylnitrene relative to acetylnitrene. Acetyl azide is calculated to decompose by concerted migration of the methyl group along with nitrogen extrusion; the free energy of activation for this concerted process is only 27 kcal/mol, and a free nitrene is not produced upon pyrolysis of acetyl azide. Methoxycarbonyl azide, on the other hand, does have a preference for stepwise Curtius rearrangement via the free nitrene. The bimolecular reactions of acetylnitrene and methoxycarbonylnitrene with propane, ethylene, and methanol were calculated and found to have enthalpic barriers that are near zero and free energy barriers that are controlled by entropy. These predictions were tested by laser flash photolysis studies of benzoyl azide. The absolute bimolecular reaction rate constants of benzoylnitrene were measured with the following substrates: acetonitrile (k = 3.4 x 10(5) M(-1) (s-1)), methanol (6.5 x 10(6) M(-1) s(-1)), water (4.0 x 10(6) M(-1) s(-1)), cyclohexane (1.8 x 10(5) M(-1) s(-1)), and several representative alkenes. The activation energy for the reaction of benzoylnitrene with 1-hexene is -0.06 +/- 0.001 kcal/mol. The activation energy for the decay of benzoylnitrene in pentane is -3.20 +/- 0.02 kcal/mol. The latter results indicate that the rates of reactions of benzoylnitrene are controlled by entropic factors in a manner reminiscent of singlet carbene processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号