首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential cycloaddition reactions between cyclopentadiene and cycloheptatriene have been explored theoretically. B3LYP/6-31G was used to locate the transition states, intermediates, and products for concerted pathways and stepwise pathways passing through diradical intermediates. Interconversions of various cycloadducts through sigmatropic shifts were also explored. CASPT2/6-31G single point calculations were employed to obtain independent activation energy estimates. MM3 was also used to compute reaction energetics. Several bispericyclic cycloadditions in which two cycloadducts are linked by a sigmatropic shift have been identified. B3LYP predicts, in line with frontier molecular orbital predictions, that the [6+4] cycloaddition is the favored concerted pathway, but an alternative [4+2] pathway is very close in energy. By contrast, CASPT2 predicts that a [4+2] cycloaddition is the preferred pathway. B3LYP predicts that the lowest energy path to many of the cycloadducts will involve diradical intermediates, whereas CASPT2 predicts that each of the products of orbital symmetry allowed reactions will be reached most readily by closed shell processes-concerted cycloadditions and sigmatropic shift rearrangements of cycloadducts.  相似文献   

2.
The 1,3-dipolar cycloaddition of azomethine ylides bearing the biologically active 1,4-dihydropiridine ring to C(60) was investigated by means of quantum mechanical calculations at the semiempirical AM1 and DFT (B3LYP/6-31G) methods. The presence of two chiral centers and one chiral axis in the resulting fulleropyrrolidines leads to four possible [6,6] cycloaddition products. Formation of atropoisomers has also been considered. The transition-state structures were computed for the four different cycloaddition pathways to find out the lowest activation energy stereoisomer. In all cases, a frequency analysis and an IRC calculation were carried out to fully characterize the located transition-state structures. AM1 results and single-point energy calculations at the B3LYP/6-31G//AM1 level for the four transition-state structures yield activation energies values below 5 kcal/mol.  相似文献   

3.
The reactions of alkynyldihaloboranes and alkynyldialkylboranes with butadiene have been explored by using DFT methods at the B3LYP level with the 6-31G basis set. Transition structures for the concerted [4+2] cycloaddition have been found for the alkynylborane derivatives. Along with these, another reactive pathway has been found for the cycloaddition process with transition structures of high [4+3] character. The transition structures for the 1,4-alkynylboration processes have also been found. The geometries computed for the cycloaddition transition structure with high [4+3] character and the 1,4-alkynylboration transition structures are surprisingly similar though leading to different products. IRC calculations suggest that the [4+3] cycloaddition and alkynylboration pathways are associated by a zwitterionic structure.  相似文献   

4.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

5.
The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(?+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(?+) (ii). Calculations support that 1a(?+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(?+) follows pathway i, leading to trans-stilbene radical cation (2b(?+)) and thiobenzophenone.  相似文献   

6.
The ground- (S0) and lowest triplet-state (T1) pathways associated with dimerization of cyclohexadiene to give [2+2] and [4+2] cycloadducts have been theoretically studied at the UBLYP and UB3LYP levels of theory with the 6-31G* basis set. The DFT energies were validated by CCSD(T) single-point energy calculations. These cycloaddition reactions follow stepwise mechanisms with formation of bis-allylic biradical (BB) intermediates. In the S0 ground state, the interaction between two cyclohexadiene molecules with formation of BB intermediate IN(S0) has a large activation enthalpy of 32.0 kcal mol(-1). On the other hand, C-C bond-formation in the lowest triplet state (T1) leading to BB intermediate IN(T1) has a low activation enthalpy of 5.0 kcal mol(-1), but the subsequent ring closure involves a very large activation enthalpy of 43.4 kcal mol(-1). Triplet-to-singlet intersystem crossing from IN(T1) to IN(S0) favors cyclization to give the corresponding [2+2] and [4+2] cycloadducts.  相似文献   

7.
The reactions of vinylketene (1a), imidoylketene (1b), and formylketene (1c) with formaldimine (2) were studied at the B3LYP/6-31G* level. For the cycloadditions of these conjugated ketenes with 2, several possible pathways to both [4 + 2] and [2 + 2] products were examined. The lowest energy [2 + 2] pathways are, in most cases, calculated to be stepwise, forming the products via rate-determining conrotatory electrocyclization of zwitterionic intermediates. However, concerted transition structures analogous to the ketene plus ethene [2 + 2] cycloaddition reaction were also located; the existence of multiple transition states offers a resolution to a long-standing controversy regarding the mechanism of ketene plus imine cycloadditions. Both stepwise and concerted [4 + 2] pathways were calculated for 2b and for 2c; both these pathways are pseudopericyclic. The inherently low barriers associated with pseudopericyclic transition states provide an explanation of the experimental preference for [4 + 2] cycloadditions of alpha-oxoketenes and predict [4 + 2] cycloadditions should also be favored for imidoylketenes. For a vinylketene constrained to a Z-geometry, the concerted [4 + 2] cycloaddition is also predicted to be the lowest energy pathway. An explanation is offered for the unusual thermal equilibration from a six-membered ring (3d) to a four-membered ring (4d) observed by Sato et al. Transition structures for facile pseudopericyclic 1,3- and 1,5-hydrogen shifts in the zwitterions were also calculated.  相似文献   

8.
The reactions of electrophilically activated benzonitrile N-oxides (BNOs) toward 3-methylenephthalimidines (MPIs) have been studied using density functional theory (DFT) at the B3LYP/6-31G* level. For these reactions, two different channels allowing the formation of the [3 + 2] cycloadducts and two isomeric (E)- and (Z)-oximes have been characterized. The 1,3-dipolar cycloadditions take place along concerted but highly asynchronous transition states, while formation of the oximes is achieved through a stepwise mechanism involving zwitterionic intermediates. Both reactions are initiated by the nucleophilic attack of the methylene carbon of the MPIs to the carbon atom of the electrophilically activated BNOs. The analysis based on the natural bond orbital (NBO) and the topological analysis of the electron localization function (ELF) at the transition structures and intermediates explains correctly the polar nature of these reactions. Solvent effects considered by the PCM model allow explaining the low incidence of the solvent polarity on the rate and composition of the reactions.  相似文献   

9.
Thermal and microwave assisted [4+2] cycloadditions of 1,4-diaryl-1-aza-1,3-butadienes with allenic esters lead to cycloadducts, which after a 1,3-H shift afford variedly substituted unsymmetrical 2-alkyl-1,4-diaryl-3-ethoxycarbonyl-1,4-dihydropyridines in high yields. Reactions carried out under microwave irradiation are cleaner and give higher yields with much shortened reaction times. Density functional theory (DFT) at the B3LYP/6-31G* level has been used to calculate geometric features of the reactants, barrier for s-trans to s-cis and reverse isomerization of azadienes (5a-d, 10a-e), dihedral angles between N(1), C(2), C(3), and C(4) atoms of azadienes along with various indices such as chemical hardness (eta), chemical potential (micro), global electrophilicity (omega), and the difference in global electrophilicity (Deltaomega) between the reacting pairs and Fukui functions (f (+) and f(-)). The results revealed that s-trans is the predominant conformation of azadienes at ambient temperature and the barrier for conversion of the s-trans rotamer of 1-azadienes to s-cis may be the major factor influencing the chemoselectivity, i.e., [4+2] verses [2+2] cycloaddition. The regiochemistry of the observed cycloadditions is collated with the obtained local electrophilicity indices (Fukui functions). Transition states for the formation of both [4+2] and [2+2] cycloadducts as located at the PM3 level indicate that the transition state for the formation of [4+2] cycloadducts has lower energy, again supporting the earlier conclusion that preferred formation of [4+2] cycloaaducts at higher temperature may be a consequence of barrier for s-trans to s-cis transformation of 1-azadienes.  相似文献   

10.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

11.
The 1,3-dipolar cycloaddition of methyl azide to C60 and the subsequent nitrogen elimination from the formed triazoline intermediate to yield the aziridine adduct have been studied using semiempirical and density functional methods. The results obtained show that the addition of methyl azide to C60 takes place in the ring junction between two six-membered rings leading to a closed [6,6]-trizoline intermediate with an energy barrier of about 20 kcal mol-1 and an exothermicity of ca. 2 kcal mol-1 at the B3LYP/6-31G**//AM1 level of theory. The subsequent thermal loss of N2 takes place through a stepwise mechanism in which the cleavage of the N-N single bond precedes the breaking of the N-C bond, with a total activation energy of approximately 45 kcal mol-1. The N2 loss occurs simultaneously with the formation of the new N-C bond. During the process, the steric effects of the leaving N2 molecule prevent the addition of the nitrene substituent to the [6,6]-ring junction attacked initially and force the addition to an adjacent [5,6]-ring junction.  相似文献   

12.
Chiral N-heterocyclic carbenes were found to be efficient catalysts for the formal [4+2] cycloaddition reaction of alkyl(aryl)ketenes and 9,10-phenanthrenequinone to give the corresponding cycloadducts in good yields with high enantioselectivities.  相似文献   

13.
[reaction: see text] Ab initio and density functional studies (DFT) on cycloaddition reactions of 1,3-diazabuta-1,3-dienes with ketenes are reported. The vinylic (C=C) and the carbonyl (C=O) units of the ketenes are found to participate in concerted asynchronous [4 + 2] cycloaddition reactions. The transition states (3t, 4t, and 7t) for these paths have been located on the PE surface at the correlated levels of ab initio calculations. A reasonable mechanism for the formation of [4 + 2] and [2 + 2] adducts is presented.  相似文献   

14.
[reaction: see text] The mode selectivity in the intramolecular cyclization of a particular class of ketenimines bearing N-acylimino units has been studied by ab initio and DFT calculations. In the model compounds the carbonyl carbon atom and the keteniminic nitrogen atom are linked either by a vinylic or an o-phenylene tether. Two cyclization modes have been analyzed: the [2+2] cycloaddition furnishing compounds with an azeto[2,1-b]pyrimidinone moiety and a 6pi-electrocyclic ring closure leading to compounds enclosing a 1,3-oxazine ring. The [2+2] cycloaddition reaction takes place via a two-step process with formation of a zwitterionic intermediate, which has been characterized as a cross-conjugated mesomeric betaine. The 6pi-electrocyclic ring closure occurs via a transition state whose pseudopericyclic character has been established on the basis of its magnetic properties, geometry, and NBO analysis. The 6pi-electrocyclic ring closure is energetically favored over the [2+2] cycloaddition, although the [2+2] cycloadducts are the thermodynamically controlled products. A quantitative kinetic analysis predicts that 1,3-oxazines would be the kinetically controlled products, but they should transform rapidly and totally into the [2+2] cycloadducts at room temperature. In the experimental study, a number of N-acylimino-ketenimines, in which both reactive functions are supported on an o-phenylene scaffold, have been successfully synthesized in three steps starting from 2-azidobenzoyl chloride. These compounds rapidly convert into azeto[2,1-b]quinazolin-8-ones in moderate to good yields as a result of a formal [2+2] cycloaddition.  相似文献   

15.
Ab initio and DFT calculations have been performed to study the origin of the regio- and stereoselectivity of the Diels-Alder reactions of dialkylvinylboranes with substituted dienes. B3LYP/6-31G energies of the transition structures for the reactions of dimethylvinylborane and vinyl-9-BBN with trans-piperylene and isoprene yielded calculated ratios which are in very good agreement with experimental values. Nonclassical carbon-boron [4+3] secondary orbital interactions seem to account for the high endo stereoselectivity of these reactions. However, C-B interactions become less important when the bulkiness of the alkyl groups attached to boron increases. Both endo and exo transition structures for the reactions of dimethylvinylborane and vinyl-9-BBN adopt classical [4+2] character. This study also extends Singleton's investigation on butadiene to regioselectivity. FMO theory has been used to rationalize the lack of regioselectivity in the reactions of dimethylvinylborane. The anomalous meta regioselectivity of the Diels-Alder reaction of vinyl-9-BBN with trans-piperylene is mainly caused by steric effects.  相似文献   

16.
The transition state structures for the addition of maleic acid anhydride and methyl phenylpropiolate to 1-phenyl-3,4-dimethylphosphole were generated with the AM1 semiempirical method. The competitive transition state structures for 1,5-phenyl rearrangement in 1-phenyl-3,4-dimethylphosphole was also optimized with AM1. The energies were evaluated with the SVWN and Becke3LYP DFT methods using a 6-31G(d) basis set. The reaction outcome based on the evaluated energies were discussed and compared with experimental observations.  相似文献   

17.
MO calculations have been carried out on substituted fulvenes by several semiempirical methods. The results of these calculations are compared with those by other methods, and with photoelectron spectroscopic data obtained here for several substituted fulvenes. Predictions about the periselectivity ([6+4] or [4+2]) of fulvene cycloadditions with dienes, 1,3-dipoles, and ketenes are made and compared with experimental data, where available.  相似文献   

18.
The [5+2] and [6+2] cycloaddition reactions of vinylaziridines and vinylazetidines with ketenes generated photochemically from chromium(0) and molybdenum(0) Fischer carbene complexes have been investigated. These processes constitute a straightforward and efficient route to azepanones and azocinones, respectively. The peculiar electronic properties of the metalated ketenes allow for the introduction of electron‐rich substituents in the final cycloadducts, a difficult task using conventional organic chemistry procedures. The versatility of the process is demonstrated by using Cr0 Fischer bis(carbene) complexes as metalated bis(ketene) precursors. These species produce tethered bis(azepanone)s in a single step under mild reaction conditions. Density functional theory calculations point to a stepwise reaction pathway through the initial nucleophilic attack of the nitrogen atom of the aziridine on the metalated ketene, followed by ring closure of the zwitterionic intermediate formed.  相似文献   

19.
The molecular mechanism for the cycloaddition reaction between 2-methylfuran and a masked o-benzoquinone has been characterized using quantum mechanical calculations at the B3LYP/6-31G theory level. An analysis of the results on the reaction pathway shows that the reaction takes place along a polar stepwise mechanism. The first and rate-determining step corresponds to the nucleophilic attack of the furan ring on the doubly conjugated position of the 2,4-dienone system present at the masked o-benzoquinone to give a zwitterionic intermediate. Closure of this intermediate affords the formally [2 + 4] cycloadduct. For the second step two reactive channels have been characterized corresponding to the formation of the formally [2 + 4] and [4 + 2] cycloadducts. Analysis of the energetic results indicates that while the first is the meta regiocontrolling and endo stereocontrolling step, the second one is responsible for the formation of the unexpected formally [2 + 4] cycloadduct. The global and local electrophilicity/nucleophilicity power of the reactants and intermediate have been evaluated to rationalize these results. Density functional theory analysis for these cycloadditions is in complete agreement with the experimental outcome, explaining the reactivity and selectivity of the formation of the formally [2 + 4] cycloadducts.  相似文献   

20.
The triplet-state reactions of 1,4-pentadiene have been investigated using density functional theory (UB3LYP) and ab initio (CASSCF) calculations with a 6-31G basis set. Intramolecular [2 + 2] photocycloadditions and three different reaction pathways leading to vinylcyclopropane have been examined. The computed results are in good agreement with the experimental observations, predicting the dominant product to be vinylcyclopropane produced by a di-pi-methane rearrangement, and the favored [2 + 2] cycloaddition product to be bicyclo[2.1.0]pentane. Reaction pathways involving initial C-C or C-H bond cleavage were found to be too high in energy to be significant. Both the [2 + 2] cycloadditions and the di-pi-methane rearrangement proceed through cyclic biradical intermediates formed on the triplet surface. The relative rates of formation of these triplet biradicals are found to depend on three factors: biradical stability, the geometry of the transition structure, and orbital interactions through bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号