首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A 4,5-disubstituted-9,9-dimethylxanthene-based amino acid (10) has been synthesized for incorporation into peptide sequences which have a propensity to adopt beta-sheet structure. Molecular dynamics studies support the FT-IR and NMR results which demonstrate that amides based on this residue utilize the NH and the C=O from the xanthene residue to form an intramolecular hydrogen bond (13-membered ring), unlike the previously studied dibenzofuran-based amino acid residues in which the NH and the C=O of the attached amide groups participate in intramolecular hydrogen bonding (15-membered ring). Interestingly, residue 10 derivatized as a simple amide prefers to adopt a trans conformation where the aliphatic side chains are placed on opposite sides of the plane of the 9,9-dimethylxanthene ring system. This is different than the conformational preferences of the dibenzofuran-based amino acids which adopt a cis conformation that is preorganized to nucleate beta-sheet formation. It will be interesting to see how these conformational differences effect nucleation in aqueous solution.  相似文献   

2.
Intramolecularly hydrogen-bonded structures of proline-containing model peptides with a sequence of N-tert-butoxycarbonyl-prolyl-Xaa-NHCH3 [Xaa = Gly (glycyl), Ala (alanyl), Phe (phenylalanyl), Leu (leucyl), Ile (isoleucyl), and Val (valyl)] were studied by proton nuclear magnetic resonance and infrared spectroscopy. Variation of chemical shifts of amide protons with composition change of DMSO-d6/CDCl3 mixed solvents were found to be a good measure of intramolecular hydrogen bonding of peptides in CDCl3 solution. It has been shown that 10- and 7-membered hydrogen-bonded rings, which should have the beta- and gamma-turn like structures in proteins, respectively, form competitively with each other. It is suggested that the equilibrium between the two hydrogen-bonded rings is determined by steric hindrance due to a side chain of the Xaa residue. Free energies for formation of the 10- and 7-membered hydrogen-bonded rings, deltaG10 and deltaG7, were estimated from the solvent composition-dependent change of the chemical shifts. A good correlation between deltaG10 and the occurrence frequencies of residues Xaa at the (i + 2)th position for the beta-turns in proteins has been found.  相似文献   

3.
Tripodal ligands N(CH2Py)3-n(CH2Py-6-NHR)n(R=H, n=1-3 L1-3, n=0 tpa; R=CH2tBu, n=1-3 L'1-3) are used to investigate the effect of different hydrogen bonding microenvironments on structural features of their LZnX complexes (X=Cl-, NO3-, OH-). The X-ray structures of [(L2)Zn(Cl)](BPh4)2.0.5(H2O.CH3CN), [(L3)Zn(Cl)](BPh4)3.CH3CN, [(L'1)Zn(Cl)](BPh4) 1', [(L'2)Zn(Cl)](BPh4)2'.CH3OH, and [(L'3)Zn(Cl)](BPh4)3' have been determined and exhibit trigonal bipyramidal geometries with intramolecular (internal) N-HCl-Zn hydrogen bonds. The structure of [(L'2)Zn(ONO2)]NO3 4'.H2O with two internal N-HO-Zn hydrogen bonds has also been determined. The axial Zn-Cl distance lengthens from 2.275 A in [(tpa)Zn(Cl)](BPh4) to 2.280-2.347 A in 1-3, 1'-3'. Notably, the average Zn-N(py) distance is also progressively lengthened from 2.069 A in [(tpa)Zn(Cl)](BPh4) to 2.159 and 2.182 A in the triply hydrogen bonding cavity of 3 and 3', respectively. Lengthening of the Zn-Cl and Zn-N(py) bonds is accompanied by a progressive shortening of the trans Zn-N bond from 2.271 A in [(tpa)Zn(Cl)](BPh4) to 2.115 A in 3 (2.113 A in 3'). As a result of the triply hydrogen bonding microenvironment the Zn-Cl and Zn-N(py) distances of 3 are at the upper end of the range observed for axial Zn-Cl bonds, whereas the axial Zn-N distance is one of shortest among N4 ligands that induce a trigonal bipyramidal geometry. Despite the rigidity of these tripodal ligands, the geometry of the intramolecular RN-HX-Zn hydrogen bonds (X=Cl-, OH-, NO3-) is strongly dependent on the nature of X, however, on average, similar for R=H, CH2tBu.  相似文献   

4.
Two new dipeptide isosteres derived from L-leucine and meso-tartaric acid derivatives, named 6-endo-BTL and 6-endo-BtL, were inserted in a small peptide by means of SPPS, and the conformational features of the resulting peptides 3 and 4 were studied by NMR, IR, and molecular modeling techniques. The presence of a reverse turn conformation was observed in all the structures, suggesting the key role of the scaffolds as reverse turn promoters. Peptides 3 and 4 did not adopt a preferred conformation as indicated by the presence of equilibria between open turn and intramolecular hydrogen-bonded structures. 6-endo-BTL-peptide 3 showed a 3:1 mixture of conformers. The major conformer adopted mainly an open turn structure in equilibrium with hydrogen-bonded structures. The minor conformer displayed a better organized structure with a 14-membered ring hydrogen-bond typical of a beta-hairpin-like structure, in equilibrium with a gamma-turn, too. 6-endo-BtL-peptide 4 showed a unique conformer, and did not adopt as good a conformation as 3, due to the bulky equatorial substituent at C-2. Thus, marked structural differences between peptides containing 6-endo-BTL and 6-endo-BtL scaffolds as reverse turn inducers exist.  相似文献   

5.
A new bilirubinoid analog (1) with two methoxy beta-substituents on the lactam ring of each dipyrrinone was synthesized and examined spectroscopically. It is more soluble in CH3OH and CHCl3 than bilirubin, which is insoluble in CH3OH but soluble in CHCl3. The solubility of 1 is approximately 10 microg/mL in CH3OH (vs < or =1 microg/mL for bilirubin) and approximately 3 mg/mL in CHCl3 (vs approximately 0.6 mg/mL for bilirubin). Vapor pressure osmometry indicates that 1, like bilirubin, is monomeric in CHCl3, and NMR studies show that the most stable structure has the syn-4Z,syn-15Z configuration, with the pigment's dipyrrinones engaged in intramolecular hydrogen bonding to the propionic acid carboxyl groups. And, like bilirubin, Z,Z-1 adopts a conformation that is bent in the middle into a ridge-tile shape. For the first time, a crystal structure of a bilirubin E-isomer has been obtained. Crystallization of 1 under dim room lighting gave an X-ray quality crystal of the anti-4E,syn-15Z-(photo) isomer, in which only the Z-dipyrrinone half is engaged in intramolecular hydrogen bonding to a propionic acid. Hydrogen bonding is nearly completely disengaged in the E-dipyrrinone half; yet, the ridge-tile conformation persists.  相似文献   

6.
The synthetic cyclic tetrapeptide (L-Leu-L-Tyr-delta-Avaler-delta-Avaler) is an effective inhibitor of chymotrypsin, competitive with linear peptides like Ac-L-Leu-L-Tyr-OMe. An x-ray diffraction analysis of the crystal structure of the cyclic peptide shows that the conformation of the 18-membered ring is very similar to that of one of the four conformers of cyclic hexaglycyl. There is no internal hydrogen bonding. Side chains are located on two "corners" of the approximately rectangular ring. The chii1 angles for Leu and Tyr are -74 and -48 degrees, respectively. The Leu side chain is extended away from the polypeptide ring while the Tyr side chain is folded under an adjacent carbonyl bond. The cell parameters for the space group P2U are: a = 9.361 (3 A, b = 19.039 (10) A, c = 9.603 (3), A, and beta = 116.54 (3) degrees. A molecule of (CH3)2SO (disordered) and a molecule of H2O cocrystallized with the cyclic peptide.  相似文献   

7.
[reaction: see text] The solution-phase conformational properties of tetrameric and octameric chains of C-glycosyl alpha-d-lyxofuranose configured tetrahydrofuran amino acids (where the C-2 and C-5 substituents on the tetrahydrofuran ring are trans to each other) were examined using NMR and IR and CD in organic solvents. Studies by NMR and IR demonstrated that in chloroform solution, the tetramer 7 does not adopt a hydrogen-bonded conformation whereas the octamer 10 populates a well-defined helical secondary structure stabilized by 16-membered (i, i - 3) interresidue hydrogen bonds, similar to a pi-helix. Circular dichroism studies in trifluoroethanol are consistent with this conformation for the octamer 10, and also indicate that the tetramer 7 adopts a rigid conformation not stabilized by hydrogen bonds.  相似文献   

8.
The title compound, C31H37NO4S [systematic name: (R)-tert-butyl-2-[(tert-butoxycarbonyl)amino]-3-(tritylsulfanyl)propanoate] is an L-cysteine derivative with three functions: NH2, COOH and SH, blocked by protecting groups tert-butoxycarbonyl, tert-butyl and trityl, respectively. The main chain of the molecule adopts the extended, nearly all-trans C5 conformation with the intramolecular N-H...O=C hydrogen bond. The urethane group is not involved in any intermolecular hydrogen bonding. Only weak intermolecular hydrogen bonds and hydrophobic contacts are observed in the crystal structure. These are C-H...O hydrogen bonds and CH/pi interactions with donor...acceptor distances, C...O ca. 3.5 A and C...C ca. 3.7 A, respectively. The first type of interaction links phenyl H-atoms and carbonyl groups. The second type of interaction is formed between a methyl group of the tert-butyl fragment and a trityl phenyl ring. The resulting molecular conformation in the crystal is very close to an ab initio minimum energy conformer of the isolated molecule. The extended C5 conformation of the main peptide chain is the same and there is slight discrepancy in the disposition of trityl phenyl rings. Their small dislocation creates the possibility of forming the entire network above of extensive, specific, weak intermolecular interactions; these constrain the molecule and permit it to retain the minimum energy C5 conformation of its main chain in the solid state. In contrast, in n-hexane solution, where such specific interactions cannot occur, only a small population of the molecules adopts the extended C5 conformation.  相似文献   

9.
Three epimers of a natural cyclic hexapeptide RA-VII were prepared via formation of oxazoles from thioamides or thioimidates of RA-VII followed by hydrolysis. They are the epimers at l-Ala-1, d-Ala-2, and d-Ala-4, respectively. The one having l-Ala-1 adopted trans-cis-trans-trans-trans-trans (t-c-t-t-t-t) amide configurations in the crystal, a type-VI beta-turn for residues 1-4 stabilized by one intramolecular hydrogen bond between Ala-4 NH and l-Ala-1 C = O, and in CDCl(3) existed as a mixture of six conformers, of which the major conformer was very similar to that in the crystal, but quite different from that of RA-VII in solution. The second epimer, having d-Ala-2 had in the crystalline state t-t-t-t-c-t amide configurations, a gamma-turn at Tyr-3 stabilized by two intramolecular hydrogen bonds between d-Ala-2 NH and Ala-4 C = O and between Ala-4 NH and d-Ala-2 C = O, and existed in CDCl(3) as a single conformer, the structure of which was very similar to its crystal structure, and to the crystal structure of peptide 25 except for the backbone and the side chains at residues 1 and 2. The third epimer, having d-Ala-4 had t-c-t-t-c-t amide configurations in the crystal, a type-VI beta-turn for residues 1-4 as observed in the first epimer, and in CDCl(3) existed in three conformers, of which the major one was similar to that in the crystal but different from that of RA-VII in solution. The three epimers showed very weak cytotoxicity on P-388 leukemia cells, which may be because of their conformational differences from the active conformation of RA-VII.  相似文献   

10.
A relationship between intramolecular hydrogen bonding and the cis-trans isomerization of a proline imide bond for proline-containing short peptides were studied by proton NMR and infrared spectroscopy using DMSO-d6/CDCl3 mixed solvents. The percentage of the trans form increases with increasing fraction of CDCl3 in the mixed solvents except for compounds without possibility of intramolecular hydrogen bonding. Chemical shift variations of amide protons with solvent mixing ratios were found to be useful for judging whether the amide protons take part in the intramolecular hydrogen bonding to a considerable degree or not. These results and infrared spectra were used to specify intramolecularly hydrogen bonded structures of the peptides. Formation of the 10-membered or 13-membered hydrogen bonded ring which includes the carbonyl group precedent to the prolyl residue facilitates the cis-to-trans isomerization and these hydrogen bonded rings are strong enough to restrict the proline imide bond to the trans form in CDCl3 solution. On the other hand, a 7-membered hydrogen bonded ring is not so effective in restricting the proline imide bond.  相似文献   

11.
A variety of ferrocenes bearing podand dipeptide chains have been synthesized to form an ordered structure in both solid and solution states and have been investigated by 1H NMR, FT-IR, CD, and X-ray crystallographic analyses. Conformational enantiomerization through chirality organization was achieved by the intramolecular hydrogen bondings between the podand dipeptide chains. The single-crystal X-ray structure determination of the ferrocene 2 bearing the podand dipeptide chains (-D-Ala-D-Pro-OEt) revealed two C2-symmetric intramolecular hydrogen bondings between CO (Ala) and NH (another Ala) of each podand dipeptide chain to induce the chirality-organized structure. The molecular structures of the ferrocene 1 composed of the podand L-dipeptide chains (-L-Ala-L-Pro-OEt) and 2 are in a good mirror image relationship, indicating that they are conformational enantiomers. An opposite helically ordered molecular arrangement was formed in the crystal packing of 2 as compared with 1. The ferrocene 2 exhibited induced circular dichroism (CD), which appeared at the absorbance of the ferrocene moiety. The mirror image of the CD signals between 1 and 2 was observed, suggesting that the chirality-organized structure via intramolecular hydrogen bondings is present even in solution. The ferrocene 4 bearing the podand dipeptide chains (-Gly-L-Leu-OEt) also showed an ordered structure in the crystal based on two intramolecular hydrogen bondings between CO (Gly) and NH (another Gly) of each podand dipeptide chain, together with intermolecular hydrogen bondings between CO adjacent to the ferrocene unit and NH (neighboring Leu) to create the highly organized self-assembly. A different self-assembly was observed in the crystal of the ferrocene 5 composed of the podand dipeptide chains (-Gly-L-Phe-OEt), wherein each molecule is bonded to two neighboring molecules through two pairs of symmetrical intermolecular hydrogen bonds to form a 14-membered intermolecularly hydrogen-bonded ring. These ordered structures based on the intramolecular hydrogen bondings in the solution state are also confirmed by 1H NMR and FT-IR.  相似文献   

12.
The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is pre-organized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T 7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.  相似文献   

13.
The broad applicability of the title reaction is established through studies of neutral and charged, coordinatively saturated and unsaturated, octahedral and square planar rhenium, platinum, rhodium, and tungsten complexes with cyclopentadienyl, phosphine, and thioether ligands which contain terminal olefins. Grubbs' catalyst, [Ru(=CHPh)(PCy3)2(Cl)2], is used at 2-9 mol% levels (0.0095-0.00042 M, CH2-Cl2). Key data are as follows: [(eta5-C5H4(CH2)6CH=CH2)Re(NO)(PPh3)-(CH3)], intermolecular metathesis (95 %); [(eta5-C5H5)Re(NO)(PPh3)(E(CH2CH=CH2)2)]+ TfO (E=S, PMe, PPh), formation of five-membered heterocycles (96-64%; crystal structure E = PMe); [(eta5-C5Me5)Re(NO)(PPh((CH2)6CH=CH2)2)(L)]n+ nBF4-(L/n = CO/1, Cl/0), intramolecular macrocyclization (94-89%; crystal structure L= Cl); fac-[(CO)3Re(Br)(PPh2(CH2)6CH=CH2)2] and cis-[(Cl)2Pt(PPh2(CH2)6CH=CH2)2], intramolecular macrocyclizations (80-71%; crystal structures of each and a hydrogenation product); cis-[(Cl)2Pt(S(R)(CH2)6CH= CH2)2], intra-/intermolecular macrocyclization (R=Et, 55%/24%; tBu, 72%/ <4%); trans-[(Cl)(L)M(PPh2(CH2)6CH=CH2)2] (M/L = Rh/CO, Pt/C6F5) intramolecular macrocyclization (90-83%; crystal structure of hydrogenation product, M=Pt); fac-[W(CO)3(PPh((CH2)6CH=CH2)2)3], intramolecular trimacrocyclization (83 %) to a complex mixture of triphosphine, diphosphine/ monophosphine, and tris(monophosphine) complexes, from which two isomers of the first type are crystallized. The macrocycle conformations, and basis for the high yields, are analyzed.  相似文献   

14.
The synthesis is described of calix[6]arene derivatives 4, 9, and 14 functionalized at alternate sites on the smaller rim with 4'-(pyrid-2' '-yl)phenylmethoxy, (6'-phenylpyrid-3'-ylmethoxy), and {6'-[2-(9,9-di-n-hexylfluorenyl)]pyrid-3'-ylmethoxy} substituents, respectively. They were obtained by 3-fold reactions of 2-[4-(bromomethyl)phenyl]pyridine (3), 5-(bromomethyl)-2-phenylpyridine (8), and 5-(bromomethyl)-2-(9,9-di-n-hexylfluorenyl)pyridine (13) with the 1,3,5-trimethylether of the t-Bu-calix[6]arene in the presence of sodium hydride in THF in 56-75% yields. Detailed analysis of the 1H NMR spectra (including variable-temperature data for 4) has established that 4, 9, and 14 exist predominantly in the C3v cone conformation with minor Cs isomers also observed. The X-ray crystal structure of 4 reveals two molecules of similar cone conformation, with all three 4'-(pyrid-2' '-yl)phenylmethoxy substituents stretched in the axial direction. Molecule I has a dimeric capsule structure with (pyrid-2' '-yl)phenylmethoxy substituents of one molecule interpenetrating those of its inversion equivalent to form a deep enclosed intermolecular cavity, which contains a CH2Cl2 guest molecule. Molecule II forms no such pair: the intramolecular cavity is filled with solvent molecules.  相似文献   

15.
The infrared and 1H and 13C NMR spectra of 3-aza-bicyclo[3.2.1]octane-8-β-ol have been examined in several media. To assist in interpretation of the spectroscopic data, the crystal structure has been determined by X-ray diffraction.The bicyclic system adopts a chair—envelope conformation with OH and phenethyl groups, respectively, in axial and equatorial positions with respect to the piperidine ring. The crystal structure is stabilized by means of OH…N intermolecular hydrogen bonding. In CCl4 solution the initial chair—envelope conformation changes to a boat—envelope conformation which is stabilized by an intramolecular hydrogen bond.The unambiguous assignment of all protons of the bicyclic system, not previously described, has also been carried out.  相似文献   

16.
Our previous work revealed that two adjacent D-alpha-aminoxy acids could form two homochiral N-O turns, with the backbone folding into an extended helical structure (1.8(8)-helix). Here, we report the conformational studies of linear peptides 3-6, which contain a D,L-alpha-aminoxy acid dimer segment. The NMR and X-ray analysis of 3 showed that it folded into a loop conformation with two heterochiral N-O turns. This loop segment can be used to constrain tetrapeptides 4 and 6 to form a reverse turn structure. (1)H NMR dilution studies, DMSO-d6 addition studies, and 2D-NOESY data indicated that tetrapeptides 4 and 6 folded into reverse turn conformations featured by a head-to-tail 16-membered-ring intramolecular hydrogen bond. In contrast, tetrapeptide 5 with L-Ala instead of Gly or D-Ala as the N-terminal amino acid could not form the desired reverse turn structure for steric reasons. Quantum mechanics calculations showed that model pentamide 7, with the same substitution pattern of 4, adopted a novel reverse turn conformation featuring two heterochiral N-O turns (each of an 8-membered ring hydrogen bond), a cross-strand 16-membered ring hydrogen bond, and a 7-membered ring gamma-turn.  相似文献   

17.
The effects of hydrogen bonding, inter- and intramolecular electrostatic interactions on the structure of homarinium chloride, HOMH·Cl, in the crystal and its isolated molecule have been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by the MP2 and DFT theoretical methods. In the crystal, the Cl anion is connected with protonated homarine via the O–HCl hydrogen bond of the length of 2.937(4) Å, and two N+Cl intermolecular electrostatic interactions. In the isolated molecule, according to the MP2 and B3LYP calculations, the Cl anion is engaged in a shorter hydrogen bond (O–HCl of 2.811–2.861 Å) and in one type of intramolecular electrostatic interactions. The calculated bond lengths and bond angles at the MP2 and B3LYP levels of theory are in good agreement with the X-ray data, except the conformation of the COOH group, which is cis (syn) in the crystal and trans (anti) in the isolated molecule. The tentative assignments for the experimental solid state vibrational spectra of HOMH·Cl and HOMD·Cl have been made on the basis of the B3LYP/6-31G(d,p) calculated frequencies and intensities. The effect of quaternization of picolinic acid on the chemical shifts of the ring protons and carbons is analyzed.  相似文献   

18.
Photoelectron spectra of singly charged dicarboxylate anions HO(2)C(CH(2))(n)CO(2)(-) (n = 1-10) are obtained at two different temperatures (300 and 70 K) at 193 nm. The electron binding energies of these species are observed to be much higher than the singly charged monocarboxylate anions, suggesting that the singly charged dicarboxylate anions are cyclic due to strong intramolecular hydrogen bonding between the terminal -CO(2)H and -CO(2)(-) groups. The measured electron binding energies are observed to depend on the chain length, reflecting the different -CO(2)H...(-)O(2)C- hydrogen bonding strength as a result of strain in the cyclic conformation. A minimum binding energy is found at n = 5, indicating that its intramolecular hydrogen bond is the weakest. At 70 K, all spectra are blue shifted relative to the room-temperature spectra with the maximum binding energy shift occurring at n = 5. These observations suggest that the cyclic conformation of HO(2)C(CH(2))(5)CO(2)(-) (a ten-membered ring) is the most strained among the 10 anions. The present study shows that the -CO(2)H...(-)O(2)C- hydrogen bonding strength is different among the 10 anions and it is very sensitive to the strain in the cyclic conformations.  相似文献   

19.
A single crystal X-ray diffraction study of the tripeptide Boc-Phe-Aib-Leu-OMe (Aib = alpha-aminoisobutyric acid) reveals that it forms structurally one of the best type II beta-turns so far reported in tripeptides, stabilized by 10 atom intramolecular hydrogen bonding. In contrast, the isomeric tripeptide Boc-Phe-Leu-Aib-OMe adopts a beta-strand like conformation. Interestingly, a previously reported structure of another isomeric tripeptide, Boc-Leu-Aib-Phe-OMe, shows a double bend conformation without any intramolecular hydrogen bonding. These results demonstrate an example of the creation of structural diversities in the backbone of small peptides depending upon the co-operative steric interactions amongst the amino acid residues.  相似文献   

20.
Single crystal X-ray diffraction and IR spectroscopy have been used to study the conformation of 2-hydroxyphenyl 2-hydroxy-2-(-naphthyl)vinyl ketone in solid state. It was found that one of the two possible enol tautomeric forms is stabilized in the crystal. The 1-hydroxy-3-oxo-1,3-propenylene moiety, O=C—CH=C—OH, shows a strong intramolecular H bond with a definite character of reasonance-assisted hydrogen bond in spite of being in competition with ring intermolecular hydrogen bonds. The comparison of the present results with solution NMR data indicates that the molecular geometry in solid state and in solution are similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号