首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Monooxo complexes of rhenium(V) with 2-aminophenol and some of its derivatives (H2nod), containing the N,O donor-atom set, have been synthesized. Square-pyramidal complexes [ReO(nod)2]? were isolated by reaction with (n-Bu4N) [ReOCl4] in ethanol. In benzene the neutral species [ReOCL(Hnod)2] were obtained. In the presence of hydrochloric acid in ethanol, the anionic complexes (n-Bu4N) [ReOCl3(Hnod)] were produced. Trans-[ReOCl3(PPh3)2] was also reacted with some of the H2nod ligands to yield [ReOCL2(Hnod)(PPh3]. The crystal structure of [ReOCl2(Hmap)(PPh3)] (H2map = 2-aminobenzylalcohol) was determined; crystals are monoclinic, P21/n, with a = 15.065(6), b = 11.253(7), c = 15.850(7) Å, β = 94.27(4)°, U = 2680(2) &Aringsup3; and Z = 4. The structure was solved by the Patterson method and refined by full-matrix least-squares techniques to R = 0.042. The monoanionic Hmap? ligand is coordinated as a bidentate through a neutral amino nitrogen and an anionic alcoholate oxygen atom, with the latter trans to the oxo group.  相似文献   

2.

The oxo-bridged dinuclear complexes [(μ-O){ReOCl2(L)}2] [L = 2-(1-ethylaminomethyl)-1-methylimidazole (eami); 2-(1-methylaminomethyl)-1-methylimidazole (mami); 2-(1-ethylthiomethyl)-1-methylimidazole (etmi)] were prepared by reaction of trans-[ReOCl3(PPh3)2] with L in acetone. X-ray crystallographic studies of the eami and etmi complexes show that these ligands coordinate in a bidentate manner, and that the cis, cis-N2Cl2 and cis, cis-NSCl2 equatorial planes are nearly orthogonal to the O=Re-O-Re=O backbone.  相似文献   

3.

5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene (N4L) reacts with the starting oxorhenium(V) complex, H2[ReOCl5], to yield either mononuclear [ReO(N4L)(OH2)]Cl3, or dinuclear [Re2O3(N4L)2]Cl4·2H2O depending on the concentration of hydrochloric acid in rhenium complex. The reaction of (N4L) mixed with KSCN or PPh3 with the oxorhenium(V) complex in 6N HCl, yielded the mononuclear complexes [ReO(N4L)(SCN)]Cl2·H2O and [ReO(N4L)(PPh3)]Cl3·H2O respectively. Both complexes have an octahedral configuration. These complexes decompose through several isolable, as well as non-isolable, intermediates during heating. [Re2O3(N4L\)2] (N4L\ = dianionic tetradentate ions), [ReO(N4L)Cl]Cl2 and [ReO(N4L\)(SCN)], were synthesized pyrolytically in the solid state from the corresponding rhenium(V) complexes. All have octahedral configurations. The ligand (N4L) behaves in these complexes either as a neutral tetradentate or dianionic tetradentate ligand towards the oxorhenium ions. All complexes and the corresponding thermal products were isolated and their structures were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

4.
Equivalent amounts of ReOX(3)(OPPh(3))(Me(2)S) (where X = Cl, Br) and L-histidine (L-hisH) in acetonitrile yield ReOX(2)(L-his), in which the amino acid monoanion is N,N,O-tridentate. X-ray diffraction work on both compounds shows that the three donors occupy a face in a distorted octahedron and the carboxylate oxygen is coordinated trans to the Re=O bond. The 2:1 complex [ReO(L-his)(2)]I is obtained by reacting 2 equiv of L-histidine with ReO(2)I(PPh(3))(2) in methanol in the presence of NaOCH(3). (1)H NMR spectroscopy indicates that these complexes contain one N,N,O-tridentate histidine anion coordinated as above and one N,N-bidentate histidine anion, whose carboxylate group is free. By refluxing ReOX(2)(L-his) in methanol, the carboxylic groups esterify and two octahedral units condense into an oxo-bridged dinuclear complex [ReOX(2)(L-hisMe)](2)O containing N,N-bidentate histidine methyl ester. The O=Re-O-Re=O backbone is approximately linear, and the two ReOX(2)(L-hisMe) units are related by a 2-fold axis through the central oxygen. Crystals of [ReOBr(2)(L-hisMe)](2)O consist of an ordered phase containing two of the possible diastereoisomers in a 1:1 ratio. (1)H NMR spectra of these crystals include two sets of signals, consistent with the presence of two isomers with C(2) symmetry, and the spectra of the nonrecrystallized material confirm that these are the only two isomers formed.  相似文献   

5.
2-Benzoxazolethione reacts with the parent oxorhenium(V) complex, H2[ReOCl5], to yield either mononuclear or dinuclear complexes depending on the metal: ligand molar ratio and the concentration of hydrochloric acid containing the parent rhenium complex. The mononuclear complexs [ReOLCl(OH2)3]Cl2, [ReOL2(OH2)3]Cl3 and [ReOLCl3(OH2)]; and dinuclear complexes [Re2O3(μ-L)2Cl4]·2H2O and [Re2O2(μ-L)L2Cl6]-2H2O were obtained. Both types of complexes have octahedral configurations. The mononuclear complexes prepared in 6N HCl or in 9N HCl undergo irreversible one-step solid-phase thermochromism transformation, thus, the colour of complexes changed from green to brown, black or bluish-green, upon heating. For the complexes obtained in 6N HCl, this step corresponds to structural changes due to the formation of other types of dinuclear complexes, while the mononuclear complex obtained in 9N HCl changes to another mononuclear complex with different coordination sites. On the other hand, the colour of the dinuclear complexes prepared in 2N HCl changed from brown to black, upon heating, in one step solid-phase thermochromism transformation corresponding to a change in the mode of coordination sites of the organic ligand. All thermal products obtained have octahedral configurations. The ligand behaves in these complexes either as a neutral, mono-, bidentate or monoanionic bidentate towards the oxorhenium ions. All complexes and the corresponding thermal products were isolated and their structures were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DTA measurements as well as by mass spectroscopy.  相似文献   

6.
Three methods have been developed to prepare gallium and indium complexes of three tetradentate N(2)S(2) ligands of the general formula M(N(2)S(2))R (M = Ga, In; R = Cl, Br, SCN, O(2)CC(6)H(5)-O,O'). The ancillary ligand (Cl, SCN, O(2)CC(6)H(5)-O,O') was varied with the tetradentate ligand BAT-TM. X-ray crystallography shows that the coordination geometry about the d(10) metal ion is influenced by the steric requirements of the ligands. X-ray crystallography of four molecules results in the following data: GaCl(BAT-TM) (1), formula = C(10)H(22)ClGaN(2)S(2), space group = Pnma, a = 12.387(4) ?, b = 21.116(6) ?, c = 5.986(2) ?, V = 1565.8(9) ?(3), Z = 4; InCl(BAT-TM) (2), formula = C(10)H(22)ClInN(2)S(2), space group = Pnma, a = 12.968(9) ?, b = 29.29(1) ?, c = 5.866(2) ?, V = 1620(2) ?(3), Z = 4; InNCS(BAT-TM) (3), formula = C(11)H(24)ClInN(3)S(3), space group = Pbca, a = 11.812(3) ?, b = 11.679(3) ?, c = 24.238(9) ?, V = 3449.7 (17) ?(3), Z = 8; In(O,O'-O(2)CC(6)H(5))(BAT-TM) (4), formula = C(19)H(29)O(2)InN(2)S(2), space group = P2(1)/n, a = 10.783(2) ?, b = 18.708(4) ?, c = 12.335(4) ?, V = 2321.7(9) ?(3), Z = 4. Proton NMR studies show that the complexes are stable in solution; in polar solvents such as acetonitrile, for certain molecules, two metal-ligand complexes are observed. Similarly, two metal-ligand complexes are seen in NMR data taken in 80% acetonitrile/20% D(2)O (pD = 4.6) mixture. HPLC studies (acetonitrile/50 mM sodium acetate, pH = 4.6) show that the lipophilicity of the ligand determines the retention time of the complex.  相似文献   

7.
Bis(amino)silane bearing bulky substituents on nitrogen, LH2 [L = Me2Si(NDipp)2, Dipp = 2, 6‐diisopropylphenyl] was reacted with nBuLi (ratio 1:1 and 1:2) in toluene. The Me2Si(LiNDipp)2 was treated with SbCl3 in a 1:1 ratio to yield the four‐membered SiN2Sb ring compound of composition [η2(N,N)‐Me2Si(NDipp)2SbCl] ( 1 ). The mono lithiated bis(amino)silane was used to synthesize the monodentate heterotetraatomic complex [(η1‐Me2SiNDipp)NHDippSbCl2] ( 2 ) by the reaction with SbCl3. The complexes were characterized by 1H and 13C NMR, elemental analysis, IR, and single‐crystal X‐ray structural analysis.  相似文献   

8.
根据模拟钒卤代过氧化物酶(V-HPOs)活性中心的配位环境,设计并合成了2种新型过氧钒配合物:Na[VO(O2)2(C10H8N2)]·8H2O(1)和K3H[(VO)2(O2)4(μ2-O)]·H2O(2),通过元素分析、红外光谱和紫外光谱对其进行了表征,并通过X射线单晶衍射方法确定了其结构。 配合物1晶体属于三斜晶系,空间群:P-1,a=0.7213(2) nm,b=1.1269(4) nm,c=1.3728(4) nm,α=68.349(4)°,β=89.178(4)°,γ=88.050(4)°,V=1.0365(6) nm3。 配合物2的晶体属于单斜晶系,空间群:P21/c,a=0.67047(12) nm,b=0.99503(18) nm,c=1.5817(3) nm,α=γ=90°,β=93.739(2)°,V=1.0530(3) nm3。 配合物1和2分别是五角双锥和八面体配位构型。 通过催化溴化反应活性研究发现,2种配合物均可作为潜在的钒卤代过氧化物酶模拟物。  相似文献   

9.
With the aim of studying the structure-physicochemical properties-biological activity relation, we have synthesized a series of organosilicon neutral oxorhenium(V) complexes with mixed ligands and we have determined their lipophilicity. X-ray diffraction has been used to establish the molecular structure of (3-triphenylsiloxypropanethiolato)(3-thiapentane-1,5-dithiolato)oxorhenium(V), (2-trimethylsiloxy- and 2-hydroxyethanethiolato)[3-(N-methyl)azapentane-1,5-dithiolato]oxorhenium(V). We have studied the neurotropic properties and acute toxicity of the synthesized complexes in vivo and their dependence on the nature of the monodentate and tridentate ligands. We have established that all the studied compounds have pronounced sedative action (they prolong the life of mice under hypoxia conditions, they are phenamine antagonists, they exhibit anticonvulsive action and prevent retrograde amnesia).  相似文献   

10.
Great success has been achieved in the enantioselective-catalyzed reactions over the past few years. In the various catalyst, C2-symmetric chiral bis(oxazoline)ligand-metal complexes accepted great attention in recent years for they showed effective enantioselection in various catalytic reactions and were easy to be prepared from available optically active amine acid[1]. For the test of enantioselective-catalyzed cyclopropanation from sulfonyl-carbanions and alkenes, a series of new bis(oxazolinyl)pyridine complexes were synthesized. Nickel and iron was found as effective catalysts in the cyclopropanation from sulfonylcarbanions in previous research[2]. Some nickel or iron bis(oxazolinyl)pyridines were prepared(scheme 1). These complexes were characterized with MS, IR and so on.  相似文献   

11.
Addition of one equivalent of LiN(i-Pr)2 or LiN(CH2)5 to carbodiimides, RN=C=NR [R=cyclohexyl (Cy), isopropyl (i-Pr)], generated the corresponding lithium of tetrasubstituted guanidinates {Li[RNC(N R^′2)NR](THF)}2 [R=i-Pr, N R^′2=N(i-Pr)2 (1), N(CH2)5 (2); R=Cy, N R^′2=N(i-Pr)2 (3), N(CH2)5 (4)]. Treatment of ZrCl4 with freshly prepared solutions of their lithium guanidinates provided a series of bis(guanidinate) complexes of Zr with the general formula Zr[RNC(N R^′2)NR]2Cl2 [R=i-Pr, N R^′2=N(i-Pr)2 (5), N(CH2)5 (6); R=Cy, N R^′2=N(i-Pr)2 (7), N(CH2)5 (8)]. Complexes 1, 2, 5-8 were characterized by elemental analysis, IR and ^1H NMR spectra. The molecular structures of complexes 1, 7 and 8 were further determined by X-ray diffraction studies.  相似文献   

12.
Functionalized bis(amino)phosphines of the type PhP(NHR)2 ( 1a–c ) and aminophosphines of the type Ph2PNHR ( 2a–c ) have been synthesized by treating PhPCl2 or Ph2PCl with corresponding primary amines of H2N-R where R = -CH2SO3H, -C6H4SO3H, and benzo-15-crown-5. The molybdenum(0) complex of the aminophosphine ( 3 ) has been obtained by reacting cis-[Mo(CO)4(bipy)] with aminophosphine ( 2c ). The synthesized aminophosphines, bis(amino)phosphines, and the molybdenum(0) complex have been characterized by IR, 1H NMR, 31P NMR, and MS spectroscopic techniques and by elemental analysis.  相似文献   

13.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

14.
15.
16.
17.
18.
以六甲基二硅烷为原料,经氯代、格式反应和锂化反应制得双(环戊二烯基)配体(C5H5)2MeSiSiMe2R(3a^3c),将该配体分别与五羰基铁在对二甲苯中回流反应,合成了3种新型的硅基桥连双(环戊二烯基)四羰基二铁类配合物[η^5,η^5-C5H4MeSi(SiMe2R)C5H4]Fe2(CO)2(μ-CO)2[R=p-C6H4CH3(4a),R=p-C6H4OCH3(4b),R=CH2C6H5(4c)],其结构经1H NMR,13C NMR,IR和元素分析表征。并用X-射线单晶衍射法确定了配合物4b的分子结构。结果表明:4b(CCDC:1942618)属单斜晶系,Cc空间群,晶胞参数a=18.591(3)A,b=10.3080(10)A,c=14.136(2)A,α=90°,β=117.262(6)°,γ=90°,V=2408.1(6)A^3,Z=4,F(000)=1152,Dc=1.546 g·cm^-3,μ=1.338 mm^-1,R1=0.0351,wR2=0.0754。  相似文献   

19.
王庆伦  廖代正  阎世平  姜宗慧  程鹏 《中国化学》2002,20(11):1249-1255
IntroductionMolecularmagnetismofpolynuclearcomplexesisofconsiderableinterestfordesigningnewmagneticmaterialsandforinvestigatingtherelationshipbetweenthestructureandtheroleofthepolymetallicactivesitesinbiologicalsystems.1 4 Journauxetal .5haverecentlyprop…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号