首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

2.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

3.
4.
5.
6.
The nickelacarboranes [NEt(4)][2-(eta(3)-C(3)H(4)R)-closo-2,1,7-NiC(2)B(9)H(11)] (R = H (1a), Ph (1b)) have been synthesized via reaction between [Na](2)[nido-7,9-C(2)B(9)H(11)] and [Ni(2)(micro-Br)(2)(eta(3)-C(3)H(4)R)(2)] in THF (THF = tetrahydrofuran), followed by addition of [NEt(4)]Cl. Protonation of 1a in the presence of a donor ligand L affords the complexes [2,2-L(2)-closo-2,1,7-NiC(2)B(9)H(11)] (L = CO (2), CNBu(t) (3)). Addition of PEt(3) (1 equiv) to 2 produces quantitative conversion to [2-CO-2-PEt(3)-closo-2,1,7-NiC(2)B(9)H(11)], 4. Species 2-4 exhibit in solution hindered rotation of the NiL(2) fragment with respect to the eta(5)-C(2)B(9) cage unit. Protonation of 1a in the presence of a diene affords the neutral complexes [2-(eta(2):eta(2)-diene)-closo-2,1,7-NiC(2)B(9)H(11)] (diene = C(5)Me(5)H (5), dcp (6), cod (7), nbd (8), chd (9), and cot (10a); dcp = dicyclopentadiene, cod = 1,5-cyclooctadiene, nbd = norbornadiene, chd = 1,3-cyclohexadiene, and cot = cyclooctatetraene). Variable temperature (1)H NMR experiments show that the [Ni(diene)] fragments are freely rotating even at 193 K. A small quantity of the di-cage species [2,2'-micro-(1,2:5,6-eta-3,4:7,8-eta-cot)-(closo-2,1,7-NiC(2)B(9)H(11))(2)] (10b) is formed as a coproduct in the synthesis of 10a. This species can be rationally synthesized by protonation of 1a and subsequent addition of 10a.  相似文献   

7.
Reduction of CpMoCl(4) with 3.1 equiv of Na/Hg amalgam (1.0% w/w) in the presence of 1 equiv of dmpe and 1 equiv of trimethylphosphine afforded the molybdenum(II) chloride complex Cp(dmpe)(PMe(3))MoCl (1) (Cp = 1,2,3,4,5-pentamethylcyclopentadienyl, dmpe = 1,2-bis(dimethylphosphino)ethane). Alkylation of 1 with PhCH(2)MgCl proceeded in high yield to liberate PMe(3) and give the 18-electron pi-benzyl complex Cp(dmpe)Mo(eta(3)-CH(2)Ph) (2). Variable temperature NMR experiments provided evidence that 2 is in equilibrium with its 16-electron eta(1)-benzyl isomer [Cp(dmpe)Mo(eta(1)-CH(2)Ph)]. This was further supported by reaction of 2 with CO to yield the carbonyl benzyl complex Cp(dmpe)(CO)Mo(eta(1)-CH(2)Ph) (3). Complex 2 was found to react with disubstituted silanes H(2)SiRR' (RR' = Me(2), Et(2), MePh, and Ph(2)) to form toluene and the silylene complexes Cp(dmpe)Mo(H)(SiRR') (4a: RR' = Me(2); 4b: RR' = Et(2); 4c: RR' = MePh; 4d: RR' = Ph(2)). Reactions of 2 with monosubstituted silanes H(3)SiR (R = Ph, Mes, Mes = 2,4,6-trimethylphenyl) produced rare examples of hydrosilylene complexes Cp(dmpe)Mo(H)Si(H)R (5a: R = Ph; 5b: R = Mes; 5c: R = CH(2)Ph). Reactivity of complexes 4a-c and 5a-d is dominated by 1,2-hydride migration from metal to silicon, and these complexes possess H.Si bonding interactions, as supported by spectroscopic and structural data. For example, the J(HSi) coupling constants in these species range in value from 30 to 48 Hz and are larger than would be expected in the absence of H.Si bonding. A neutron diffraction study on a single crystal of diethylsilylene complex 4b unequivocally determined the hydride ligand to be in a bridging position across the molybdenum-silicon bond (Mo-H 1.85(1) A, Si-H 1.68(1) A). The synthesis and reactivity properties of these complexes are described in detail.  相似文献   

8.
9.
The synthesis and characterization of nido-[1,1,2,2-(CO)(4)-1,2-(PPh(3))(2)-1,2-FeIrB(2)H(5)] (1) is reported. 1 is formed in low yield as a degradation product from the reaction between [{&mgr;-Fe(CO)(4)}B(6)H(9)](-) and trans-Ir(CO)Cl(PPh(3))(2) in THF and is characterized from NMR, IR, and analytical data and by a single-crystal X-ray diffraction study. 1 crystallizes in the monoclinic space group P2(1)/n with a = 12.8622(12), b = 14.3313(12), c = 23.579(3) ?, beta = 97.12(2) degrees, Z = 4, V = 4257.0(8) ?(3), R(1) = 4.83%, and wR(2)()(F(2)) = 12.43%. The heterobimetallaborane structure may be viewed as a derivative of the binary boron hydride nido-[B(4)H(7)](-) and is related to the known homobimetallatetraborane analogues [Fe(2)(CO)(6)B(2)H(6)] and [Co(2)(CO)(6)B(2)H(4)]. 1 exhibits proton fluxionality in its (1)H NMR spectrum, which is related to that found in the latter two compounds.  相似文献   

10.
Reaction of cis-Pt(PMe2Ph)2Cl2 with Tl2[7-Ph-7,8-nido-C2B9H10] affords 1-Ph-3,3-(PMe2Ph)2-3,1,2-PtC2B9H10, mild thermolysis (55°C) of which yields 1-Ph-3,3-(PMe2Ph)2-3,1,11-PtC2B9H10 and 11-Ph-3,3-(PMe2Ph)2-3,1,11-PtC2B9H10. Both of the latter compounds are produced by the microwave irradiation of a mixture of cis-Pt(PMe2Ph)2Cl2 and [HNMe3][7-Ph-7,8-nido-C2B9H11]. When cis-Pt(PMe2Ph)2Cl2 is allowed to react with Tl2[7,8-Ph2-7,8-nido-C2B9H9] at room temperature the only isolable species is 1,11-Ph2-3,3-(PMe2Ph)2-3,1,11-PtC2B9H9. The generation of rearranged products with 3,1,11-PtC2B9 architectures is inconsistent with a diamond-square-diamond mechanism for the isomerisation of icosahedral heteroboranes.  相似文献   

11.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

12.
13.
The reactivity of the bridged chloroborylene complex [mu-BCl((eta(5)-C(5)H(4)Me)Mn(CO)(2))(2)] (1) toward pyridine was investigated under various conditions. In the presence of protic reagents such as H[Co(CO)(4)] or H[BF(4)], the formation of the aminoborylene complex [1-(mu-B)-4-H-(NC(5)H(5))((C(5)H(4)Me)Mn(CO)(2))(2)] (2) was observed. Compound 2 represents the product of an unprecedented formal 1,4-hydroboration of pyridine. Corresponding reactions of 1 with pyridine and Tl[PF(6)] afforded 2 in similar yields, thus providing evidence that the abstraction of the boron bound chloride initiates the observed reaction. Complex 2 was fully characterized in solution and in the crystal.  相似文献   

14.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

15.
16.
17.
Mild pyrolysis of (eta5-C5Me5Ru)2B6H12 with Fe2(CO)9 yields the 12 skeletal electron pair (sep) Fe2(CO)6(eta5-C5Me5RuCO)(eta5-C5Me5Ru)B6H10 cluster; the title compound represents a novel class of hybrid multiple cluster in which a Fe2B2 tetrahedron has been fused to a ruthenaborane substrate.  相似文献   

18.
The reaction of nido-[7,8,9-PC(2)B(8)H(11)] (1) with [[CpFe(CO)(2)](2)] (Cp=eta(5)-C(5)H(5) (-)) in benzene (reflux, 3 days) gave an eta(1)-bonded complex [7-Fp-(eta(1)-nido-7,8,9,-PC(2)B(8)H(10))] (2; Fp=CpFe(CO)(2); yield 38 %). A similar reaction at elevated temperatures (xylene, reflux 24 h) gave the isomeric complex [7-Fp-(eta(1)-nido-7,9,10-PC(2)B(8)H(10))] (3; yield 28 %) together with the fully sandwiched complexes [1-Cp-closo-1,2,4,5-FePC(2)B(8)H(10)] 4 a (yield 30%) and [1-Cp-closo-1,2,4,8-FePC(2)B(8)H(10)] 4 b (yield 5%). Compounds 2 and 3 are isolable intermediates along the full eta(5)-complexation pathway of the phosphadicarbaborane cage; their heating (xylene, reflux, 24 h) leads finally to the isolation of compounds 4 a (yields 46 and 52%, respectively) and 4 b (yields 4 and 5%, respectively). Moreover, compound 3 is isolated as a side product from the heating of 2 (yield 10%). The structure of compound 4 a was determined by an X-ray structural analysis and the constitution of all compounds is consistent with the results of mass spectrometry and IR spectroscopy. Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B]-COSY, and (1)H[(11)B(selective)] magnetic resonance measurements led to complete assignments of all resonances and are in excellent agreement with the structures proposed.  相似文献   

19.
The phosphide-bridged dimolybdenum complexes (H-DBU)[Mo2Cp2(mu-PR2)(CO)4] (R= Cy, Ph; DBU = 1,8-diazabicyclo[5.4.0.]undec-7-ene) react with p-benzoquinone to give the hemiquinone complexes [Mo(2)Cp2(OC6H4OH)(mu-PR2)(CO)4]. The latter experience facile homolytic cleavage of the corresponding Mo-O bonds and react readily at room temperature with HSPh or S2Ph2 to give the thiolate complexes [Mo2Cp2(mu-PCy2)(mu-SPh)(CO)4] or [Mo2Cp2(mu-PR2)(mu-SPh)(CO)2]. In contrast, PRH-bridged substrates experience overall insertion of quinone into the P-H bond to give the anionic compounds (H-DBU)[Mo(2)Cp2{mu-PR(OC6H4OH)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The cyclohexyl anion experiences rapid nucleophilic displacement of the hemiquinone group by different anions ER- (ER = OH, OMe, OC4H5, OPh, SPh) to give novel anionic compounds (H-DBU)[Mo2Cp2{mu-PCy(ER)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The structure of four of these hydride complexes [PPh(OC6H4OH), PCy(OH), PCy(OMe), and PCy(OPh) bridges] was determined by X-ray diffraction methods and confirmed the presence of cis and trans isomers in several of these complexes. In addition, it was found that the hydroxyphosphide anion [Mo2Cp2{mu-PCy(OH)}(CO)4]- displays in solution an unprecedented tautomeric equilibrium with its hydride-oxophosphinidene isomer [Mo2Cp2(mu-H){mu-PCy(O)}(CO)4]-.  相似文献   

20.
A technique is proposed for directed synthesis of 6,11-dichloro-9-dimethylthio-7,8-dicarba-nido-undecaborane [6,11-Cl2-9-SMe2-7,8-C2B9H9]. Single-crystal X-ray diffraction is used to identify the molecular and crystal structure of the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号