首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kinetics of methyl group transfer between the Ni-Fe-S-containing acetyl-CoA synthase (ACS) and the corrinoid protein (CoFeSP) from Clostridium thermoaceticum were investigated using the stopped-flow method at 390 nm. Rates of the reaction CH(3)-Co(3+)FeSP + ACS(red) <==> Co(1+)FeSP + CH(3)-ACS(ox) in both forward and reverse directions were determined using various protein and reductant concentrations. Ti(3+)citrate, dithionite, and CO were used to reductively activate ACS (forming ACS(red)). The simplest mechanism that adequately fit the data involved formation of a [CH(3)-Co(3+)FeSP]:[ACS(red)] complex, methyl group transfer (forming [Co(1+)FeSP]:[CH(3)-ACS(ox)]), product dissociation (forming Co(1+)FeSP + CH(3)-ACS(ox)), and CO binding yielding a nonproductive enzyme state (ACS(red) + CO <==> ACS(red)-CO). Best-fit rate constants were obtained. CO inhibited methyl group transfer by binding ACS(red) in accordance with K(D) = 180 +/- 90 microM. Fits were unimproved when >1 CO was assumed to bind. Ti(3+)citrate and dithionite inhibited the reverse methyl group transfer reaction, probably by reducing the D-site of CH(3)-ACS(ox). This redox site is oxidized by 2e(-) when the methyl cation is transferred from CH(3)-Co(3+)FeSP to ACS(red), and is reduced during the reverse reaction. Best-fit K(D) values for pre- and post-methyl-transfer complexes were 0.12 +/- 0.06 and 0.3 +/- 0.2 microM, respectively. Intracomplex methyl group transfer was reversible with K(eq) = 2.3 +/- 0.9 (k(f)/k(r) = 6.9 s(-1)/3.0 s(-1)). The nucleophilicity of the [Ni(2+)D(red)] unit appears comparable to that of Co(1+) cobalamins. Reduction of the D-site may cause the Ni(2+) of the A-cluster to behave like the Ni of an organometallic Ni(0) complex.  相似文献   

2.
Visible light irradiation of a reaction mixture of carbonyl-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)) as a photosensitizer, hexachloroplatinate(IV) as an electron acceptor, and an alkene in alkaline aqueous acetonitrile induces selective epoxidation of the alkene with high quantum yield (Phi = 0.6, selectivity = 94.4% for cyclohexene and Phi = 0.4, selectivity = 99.7% for norbornene) under degassed conditions. The oxygen atom of the epoxide was confirmed to come from a water molecule by an experiment with H(2)(18)O. cis-Stilbene was converted into its epoxide, cis-stilbeneoxide, without forming trans-stilbeneoxide. trans-Stilbene, however, did not exhibit any reactivity. Under neutral conditions, an efficient buildup of the cation radical of Ru(II)TMP(CO) was observed at the early stage of the photoreaction, while an addition of hydroxide ion caused a rapid reaction with the cation radical to promote the reaction with reversion to the starting Ru(II)TMP(CO). A possible involvement of a higher oxidized state of Ru such as Ru(IV), Ru(V), Ru(VI) through a dismutation of the Ru(III) species was excluded by an experiment with Ru(VI)TMP(O)(2). Decarbonylation of the Ru complex was also proven to be invalid. A reaction mechanism involving an electron transfer from the excited triplet state of Ru(II)TMP(CO) to hexachloroplatinate(IV) and subsequent formation of OH(-)-coordinated Ru(III) species, leading to an oxo-ruthenium complex as the key intermediate of the photochemical epoxidation, was postulated.  相似文献   

3.
Fluorine incorporation by concomitant fluoroalkyl radical addition to alkene or alkyne and functional group migration (FGM) represents an ingenious and robust strategy for the synthesis of structurally diverse fluorinated compounds. This account gives an overview of related studies in our group, in which three main reaction modes are discussed: 1) radical fluoroalkylative difunctionalization of unactivated alkenes via intramolecular FGM; 2) alkene difunctionalization by docking-migration process using fluoroalkyl-containing bifunctional reagents; 3) incorporation of fluoroalkyl group into C(sp3)−H bond via consecutive hydrogen atom transfer (HAT) and FGM. Relying on these methods, a variety of trifluoromethylation and di-/mono-fluoroalkylation reactions along with the migration of cyano, heteroaryl, oximino, formyl, alkynyl, and alkenyl groups have been accomplished under mild conditions.  相似文献   

4.
The reaction of the methylidyne radical (CH) with acetaldehyde (CH(3)CHO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of CHBr(3) and react with acetaldehyde in an excess of helium and nitrogen gas flow. Five reaction exit channels are observed corresponding to elimination of methylene (CH(2)), elimination of a formyl radical (HCO), elimination of carbon monoxide (CO), elimination of a methyl radical (CH(3)), and elimination of a hydrogen atom. Analysis of the photoionization yields versus photon energy for the reaction of CH and CD radicals with acetaldehyde and CH radical with partially deuterated acetaldehyde (CD(3)CHO) provides fine details about the reaction mechanism. The CH(2) elimination channel is found to preferentially form the acetyl radical by removal of the aldehydic hydrogen. The insertion of the CH radical into a C-H bond of the methyl group of acetaldehyde is likely to lead to a C(3)H(5)O reaction intermediate that can isomerize by β-hydrogen transfer of the aldehydic hydrogen atom and dissociate to form acrolein + H or ketene + CH(3), which are observed directly. Cycloaddition of the radical onto the carbonyl group is likely to lead to the formation of the observed products, methylketene, methyleneoxirane, and acrolein.  相似文献   

5.
6.
This work performed a theoretical investigation to explore the mechanism and reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons.  相似文献   

7.
Studies on the photoinduced electron transfer (PET) reactions of isobutylene (2-methylpropene, 1) in the absence of methanol have identified a new photochemical nucleophile-olefin combination, aromatic substitution (photo-NOCAS) reaction. Under these conditions acetonitrile was found to act as the nucleophile and to combine with the alkene radical cation. The resulting distonic radical cation then adds to the radical anion of 1,4-dicyanobenzene (2(-*)). The final product (6) results from cyclization into the ortho postion of the phenyl group. This product formation is rationalized on the basis of the relatively high oxidation potential of the alkene (i.e., one-electron oxidation yields a reactive radical cation), the fact that addition of the nucleophile (acetonitrile) to the radical cation is relatively unhindered, and the relatively low acidity of the radical cation due to the low radical stability of the allylic radical formed upon deprotonation. High-level ab initio molecular orbital calculations were used to determine the structures and relative energies of the possible intermediate distonic and bridged radical cations. The scope and mechanism of this type of photo-NOCAS reaction are discussed.  相似文献   

8.
Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3]2+, generating the highly oxidized chromophore and the powerful reductant methyl‐viologen radical MV+.. MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2.? in an aqueous medium to generate an active iron(III)‐(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.  相似文献   

9.
(o-butenylhalobenzene)Cr(CO)(3) complexes were synthesized by diastereoselectve allylmetal additions to o-halo benzaldehyde complexes. The addition of allylZnBr proved particularly convenient and clean. The complexes undergo intramolecular Pd-catalyzed cyclizations (Heck reactions) without decomplexation and/or alkene isomerization. In complexes with a benzylic stereogenic center, the diastereoselectivity of the alkene carbopalladation is governed by the planar chirality of the complex rather than by the benzylic stereogenic center in the side chain. This reaction outcome can be rationalized by the geometry of the arene plane vs that of the Pd coordination plane in the transition step of the alkene carbopalladation step. An alternative cyclization procedure involves the generation of a Cr(CO)(3)-coordinated arene radical from the bromo and iodo complexes. Intramolecular aryl-radical cyclization affords indan complexes. The transition metal arene pi-bond remains intact during this process.  相似文献   

10.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

11.
Radical reactions mediated by Schwartz reagent and zirconocene(alkene) complex are firstly described. Schwartz reagent is a promising alternative to tributyltin hydride and the first transition metal hydrido complex used as a radical mediator in organic synthesis. A zirconocene(alkene) complex effects single electron transfer to alkyl halide to generate the corresponding alkyl radical. Secondly, serendipitous allylic C-H bond activation of the coordinating alkene of zirconocene(alkene) complex and its application to organic synthesis are summarized. By utilizing equilibrium between zirconocene(alkene) and zirconocene 2-alkenyl hydride, reaction of acid chloride with zirconocene(alkene) provides the corresponding homoallylic alcohol by sequential attacks of the hydride and 2-alkenyl moieties. A set of hydride and 2-alkenyl attacks on 1,4-diketone yields 6-heptene-1,4-diol derivative in high yield with high stereoselectivity. Selective capture of the hydride with diisopropyl ketone gives zirconocene 2-alkenyl alkoxide, which is a useful reagent for stereoselective allylation of aldehyde and imine. alpha-Halo carbonyl compounds undergo radical allylation with the zirconocene 2-alkenyl alkoxide which serves as a substitute for allyltin.  相似文献   

12.
Using molecular dynamics (MD) simulations, we investigate the interfacial distribution of partners involved in the phase transfer rhodium catalyzed hydroformylation of olefins promoted by beta-cyclodextrins (beta-CDs). The beta-CDs, the reactant (alkene), product (aldehyde), several rhodium complexes (the catalyst, its precursor, and its alkene adduct) are simulated at the water-"oil" interface, where oil is represented by chloroform or hexane. It is shown that unsubstituted beta-CD and its 6-methylated and 2,6-dimethylated analogues adsorb at the interface, whereas the liposoluble permethylated CD does not. The precursor of the catalyst [RhH(CO)(TPPTS)3]9- (with triphenylphosphine trisulfonated TPPTS3- ligands) sits in water, but the less charged [RhH(CO)(TPPTS)2]6- catalyst and the [RhH(CO)(TPPTS)2(alkene)]6- reaction intermediate are clearly surface active. The TPPTS3- anions also concentrate at the interface, where they adopt an amphiphilic conformation, forming an electrical double layer with their Na+ counterions. Thus, the most important key partners involved in the hydroformylation reaction concentrate at the interface, thereby facilitating the reaction, a process which may be further facilitated upon complexation by CDs. These results point to the importance of adsorption at the liquid-liquid interface in the two-phase hydroformylation reaction of olefins promoted by beta-CDs and provide microscopic pictures of this peculiar region of the solution.  相似文献   

13.
Donohoe TJ  Rosa CP 《Organic letters》2007,9(26):5509-5511
A regio- and stereocontrolled total synthesis of (-)-allosamizoline is described. The key steps for this synthesis are ring-closing metathesis to form the cyclopentene core, halocyclization to afford the oxazoline ring, and finally stereoselective alkene radical addition followed by an alkene isomerization reaction to install the hydroxymethyl group. (-)-Allosamizoline was prepared in a total of 13 steps and 22% overall yield.  相似文献   

14.
负载型原子转移自由基聚合配体的合成及应用   总被引:1,自引:0,他引:1  
用丙烯酸甲酯(MA)与负载到纳米二氧化硅有机/无机杂化粒子上的三乙烯四胺(TETA)进行Michael加成反应,合成了负载型原子转移自由基聚合(ATRP)配体。将其用于甲基丙烯酸甲酯(MMA)的ATRP,结果表明,动力学曲线表现为ln[c(M0)/c(Mt)](c(M0)为单体起始浓度,c(Mt)为反应时间t时单体浓度)与时间线性相关,分子量随转化率线性增加。可以通过离心轻易将催化体系从聚合物中分离出来,回收的催化体系可再次用于MMA的ATRP,且聚合反应仍具有可控/活性的特性,克服了传统ATRP中聚合后去除含过渡金属催化体系的困难。  相似文献   

15.
A computational study, using density functional theory calibrated against higher-level methods, has been undertaken to evaluate tertiary amines whose radical cations might lose hydrogen atoms from positions other than the alpha carbons. The purpose was to find photochemically activated reducing agents for carbon dioxide that could be regenerated in a separate photochemical reaction. The calculations have revealed two reactions that might be suitable for this purpose. In one, the nitrogen of the radical cation makes a bond to a remote carbon with simultaneous displacement of a hydrogen atom. In the other, a remote hydrogen atom is transferred to the nitrogen, thereby creating a distonic radical cation that can lose a hydrogen atom beta to the radical site. The latter reaction is found to be particularly favorable since it apparently involves a surface crossing that allows the amine radical cation and CO2 radical anion to transform smoothly to a ground-state formate ion and an alkene. A number of structural motifs are investigated for the amines. The lower ionization potential of aromatic amines, compared to their aliphatic analogues, is desirable in that it could permit the use of longer wavelength light to drive the reaction. However, a thermochemical cycle shows that the reduction in ionization potential must be matched by an increase in proton affinity of the amine if the intramolecular hydrogen transfer is to be exothermic. Most aromatic amines do not satisfy this criterion and, hence, would have to rely on the displacement reaction for hydrogen-atom release if they were to be used as renewable reagents for CO2 reduction. Examples of specific aromatic and aliphatic tertiary amines that should be suitable for the purpose are presented, and their relative merits and weaknesses are discussed.  相似文献   

16.
[reaction: see text] The first total synthesis of the antibiotic acanthodoral (1) has been achieved from 3-methyl-2-cyclohexen-1-one in 19 steps in 2.1% overall yield. The synthesis features the use of a Pd-ene reaction in the presence of CO to form the endocyclic alkene 8, a nonreductive acyl radical cyclization reaction, and a ring contraction reaction by the Wolff rearrangement. (+)-Acanthodoral has also been synthesized starting from (+)-S-2,2-dimethyl-6-methylenecyclohexanecarboxylic acid.  相似文献   

17.
Electronic structure methods have been used to study the transition state and products of the reaction between alkyl radicals and CO coordinated in transition-metal complexes. At the B3LYP DFT level, methyl addition to a carbonyl of [Ru(CO)5] or [Ru(CO)3(dmpe)] is calculated to be about 6 kcal/mol more exothermic than addition to free CO. In contrast, methyl addition to [Mo(CO)6] is 12 kcal/mol less exothermic than addition to CO, while the reaction enthalpy of methyl addition to [Pd(CO)4] is comparable to that of free CO. Related results are obtained at the CCSD-T level and for the reactions of the cyclohexyl radical. The transition state for these reactions is characterized by significant distortion of the geometry of the reactant complex, which include lengthening and bending of the M-CO bond, but with negligible C-C bond formation. Accordingly, the activation energy for addition to coordinated carbonyls is 2-10 kcal/mol greater than that of addition to free CO. Additional calculations were also carried out on representative unsaturated metal carbonyls. The calculated results afford an understanding of the mechanism of previously reported photochemical alkane carbonylation systems utilizing d(8)-ML5 metal carbonyls as cocatalysts. In particular, it is strongly indicated that such systems operate via direct attack by an alkyl radical at a CO ligand, a reaction that has not previously been proposed.  相似文献   

18.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

19.
A novel design for initiating radical-based chemistry in a catalytic fashion is described. The design of the concept is based on the phenylselenyl group transfer reaction from alkyl phenyl selenides by utilizing PhSeSiR(3) (1) as a catalytic reagent. The reaction is initiated by the homolytic cleavage of -C-Se- bond of an alkyl phenyl selenide by the in situ generated alkylsilyl radical (R(3)Si(*)), obtained by the mesolysis of PhSeSiR(3)](*)(-)( )()(1(*)(-)). The oxidative dimerization of counteranion PhSe(-) to PhSeSePh functions as radical terminator. The generation of 1(*)(-) is achieved by the photoinduced electron transfer (PET) promoted reductive activation of 1 through a photosystem comprising of a visible-light (410 nm)-absorbing electron rich DMA as an electron donor and ascorbic acid as a co-oxidant (Figure 1). The optimum mole ratio between the catalyst 1 and alkyl phenyl selenides for successful reaction is established to be 1:10. The generality of the concept is demonstrated by carrying out variety of radical reactions such as cyclization (10, 15-18), intermolecular addition (25), and tandem annulations (32).  相似文献   

20.
Ozonolyses of 1,1,2,2‐tetraphenylethene (TPE, 1 ) have been described many times in the literature, but the reports are contradictory. This reaction is particularly important for understanding the mechanism of alkene ozonolysis, in view of possible stabilization of reactive intermediates by aryl groups. Thus, systematic investigations of ozonolysis in both aprotic solvents and in protic solvents are reported here. Attention is directed to the following details that have been underestimated in the past: i) the actual electronic structure of ground‐state ozone (O3), ii) differentiation between strained and unstrained alkenes, iii) the significance of both the O3 concentration and the TPE concentration, iv) the influence of various solvents, including pyridine, v) the influence of the reaction temperature, vi) the role of electron‐transfer catalysis (ETC) and, vii) the effect of structural modifications. Our results suggest that ozonolysis of TPE ( 1 ) does not include a 1,3‐dipolar reaction step, but represents a particularly interesting example of electron‐donor (TPE)/electron‐acceptor (O3) redox chemistry. The present investigations include several crucial results. First, pure 3,3,6,6‐tetraphenyltetroxane ( 3 , m.p. 221° (dec.)) and pure tetraphenylethylene ozonide ( 4 , m.p. 153° (dec.)) are prepared for the first time, although 3 and 4 have long been known. Second, the singlet diradical character of O3, lessened by means of hypervalent‐electron interaction and predicted by different calculations, is evidenced via reaction with the spin‐trap galvinoxyl (2,6‐bis(1,1‐dimethylethyl)‐4‐{[3,5‐bis(1,1‐dimethylethyl)‐4‐oxocyclohexa‐2,5‐dien‐1‐ylidene]methyl}phenoxy; 8 ), and the zwitterionic reaction behavior of ground‐state O3 is ruled out. Third, the electron‐acceptor ability of O3 is evidenced by reactions with suitable tetraaryl ethylenes: it is enhanced by addition of catalytic amounts of protons or Lewis acids. Fourth, the observed distribution of the O3 O‐atoms to the two different olefinic C‐atoms of the unsymmetric alkene 27b is in full agreement with an initial single‐electron transfer (SET) step, followed by a radical mono‐oxygenation to cause the crucial C,C cleavage. Final dioxygenation should lead to the generally known products (ozonides, tetroxanes, hydroperoxides). The regioselectivity is found to be inconsistent with the expected decay of an intermediate primary ozonide. Finally, the treatment of 1,2‐bis(4‐methoxyphenyl)acenaphthylene ( 36 ) with O3 (simultaneous transfer of three O‐atoms) leads to the same experimental result as a stepwise transfer of one O‐atom followed by a transfer of two O‐atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号