首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substituent effects on O-H and O-CH(3) bond dissociation energies for a series of 18 para-substituted phenols (p-XC(6)H(4)OH) and 11 para-substituted anisoles have been studied using the density functional method in order to understand the origin of these effects. The calculated substituent effects agree well with experimental measurements for phenols but are substantially larger than the reported values for anisoles. Both ground-state effect and radical effect contribute significantly to the overall substituent effect. An electron-donating group causes a destabilization in phenols or anisoles (ground-state effect) but a stabilization in the phenoxy radicals (radical effect), resulting in reduced O-R bond dissociation energy. An electron-withdrawing group has the opposite effect. In most cases, the radical effect is more important than the ground-state effect. There is a good correlation between the calculated radical effects and calculated variations in charge and spin density on the phenoxy oxygen. This supports the concept that both polar and spin delocalization effects influence the stability of the phenoxy radical. While almost every para-substituent causes a stabilization of the phenoxy radical by spin delocalization, electron-donating groups stabilize and electron-withdrawing groups destabilize the phenoxy radical by the polar effect.  相似文献   

2.
High-level computations at G3, CBS-Q, and G3B3 levels were conducted, and good-quality C-H and N-H bond dissociation energies (BDEs) were obtained for a variety of saturated and unsaturated strained hydrocarbons and amines for the first time. From detailed NBO analyses, we found that the C-H BDEs of hydrocarbons are determined mainly by the hybridization of the parent compound, the hybridization of the radical, and the extent of spin delocalization of the radical. The ring strain has a significant effect on the C-H BDE because it forces the parent compound and radical to adopt certain undesirable hybridization. A structure-activity relationship equation (i.e., BDE (C-H) = 61.1-227.8 (p(parent)% - 0.75)(2) + 152.9 (p(radical)% - 1.00)(2) + 40.4 spin) was established, and it can predict the C-H BDEs of a variety of saturated and unsaturated strained hydrocarbons fairly well. For the C-H BDEs associated with the bridgehead carbons of the highly rigid strained compounds, we found that the strength of the C-H bond can also be predicted from the H-C-C bond angles of the bridgehead carbon. Finally, we found that N-H BDEs show less dependence on the ring strain than C-H BDEs.  相似文献   

3.
The C-H bond dissociation enthalpies (BDEs) of polarized benzylic molecules, i.e., para-substituted phenylacetonitriles (PANs), and the spin variations of the radicals of the general type p-GC6H4CH*-Y were investigated using density functional theory (DFT) calculations. In contrast to the commonly observed S-type substituent effect (see text), the present work shows that there should be three (rather than one) primary patterns (i.e., S, O, and counter-O) for remote G to affect spin and radical stability, depending upon the polarity of the alpha-Y group. Correlation analyses reveal that both the direction and magnitude of spin/radical effects are quantitatively related to the intensity of polar interaction in radical system, as registered by either the calculated group charges of the phenyl ring (C(Ph)) or by the polar constant sigma(+)s (Figures 1-4). A unified platform (Scheme 1) to rationalize the apparent differences of radical substituent effect is proposed.  相似文献   

4.
Radical stabilization energies (RSE)s have been calculated for a variety of boryl radicals complexed to Lewis bases at the G3(MP2)‐RAD level of theory. These are referenced to the B? H bond dissociation energy (BDE) in BH3 determined at W4.3 level. High RSE values (and thus low BDE(B? H) values) have been found for borane complexes of a variety of five‐ and six‐membered ring heterocycles. Variations of RSE values have been correlated with the strength of Lewis acid–Lewis base complex formation at the boryl radical stage. The analysis of charge‐ and spin‐density distributions shows that spin delocalization in the boryl radical complexes constitutes one of the mechanisms of radical stabilization.  相似文献   

5.
The effect of remote substituents on bond dissociation energies (BDE) is examined by investigating allylic C-F and C-H BDE, as influenced by Y substituents in trans-YCH=CHCH2-F and trans-YCH=CHCH2-H. Theoretical calculations at the full G3 level model chemistry are reported. The interplay of stabilization energies of the parent molecules (MSE) and of the radicals formed by homolytic bond cleavage (RSE) and their effect on BDE are established. MSE values of allyl fluorides yield an excellent linear free energy relationship with the electron-donating or -withdrawing ability of Y and decrease by 4.2 kcal mol-1 from Y = (CH3)2N to O2N. RSE values do not follow a consistent pattern and are of the order of 1-2 kcal mol-1. A decrease of 4.1 kcal mol-1 is found in BDE[C-F] from Y = CH3O to NC. BDE[YCH=CHCH2-H] generally increases with decreasing electron-donating ability of Y for electron-donating groups and does not follow a consistent pattern with electron-withdrawing groups, the largest change being an increase of 3.6 kcal mol-1 from Y = (CH3)2N to CF3. The G3 results are an indicator of benzylic BDE in p-YC6H4CH2-F and p-YC6H4CH2-H, via the principle of vinylogy, demonstrated by correlating MSE of the allylic compounds with physical properties of their benzylic analogues.  相似文献   

6.
Theoretical calculations were carried out to provide a framework for understanding the free radical oxidation of unsaturated lipids. The carbon[bond]hydrogen bond dissociation enthalpies (BDEs) of organic model compounds and oxidizable lipids (R[bond]H) and the carbon[bond]oxygen bond dissociation enthalpies of peroxyl radical intermediates (R[bond]OO*) have been calculated. The carbon[bond]hydrogen BDEs correlate with the rate constant for propagation of free radical autoxidation, and the carbon[bond]oxygen BDEs of peroxyl radicals correlate with rate constants for beta-fragmentation of these intermediates. Oxygen addition to intermediate carbon radicals apparently occurs preferentially at centers having the highest spin density. The calculated spin distribution therefore provides guidance about the partitioning of oxygen to delocalized carbon radicals. Where the C[bond]H BDEs are a function of the extent of conjugation in the parent lipid and the stability of the carbon radical derived therefrom, C[bond]OO* BDEs are also affected by hyperconjugation. This gives way to different rates of beta-fragmentation of peroxyl radicals formed from oxygen addition at different sites along the same delocalized radical. We have also studied by both theory and experiment the propensity for benzylic radicals to undergo oxygen addition at their ortho and para carbons which, combined, possess an equivalent unpaired electron spin density as the benzylic position itself. We find that the intermediate peroxyl radicals in these cases have negative C[bond]OO* BDEs and, thus, have rate constants for beta-fragmentation that exceed the diffusion-controlled limit for the reaction of a carbon-centered radical with oxygen.  相似文献   

7.
The N-H bond dissociation enthalpies (BDE's) of 40 anilines (pGC(6)H(4)NHY) from series 1 to 4 with alpha-Y and p-G substituents and the stability of related radicals (pGC(6)H(4)Ndot;Y) were studied using ab initio (MP2) and density functional methods (B3LYP) with large basis sets. The results show that both methods reproduce earlier experimental BDEs within 2-3 kcal/mol and satisfactorily predict the alpha and remote substituent effects on BDEs (DeltaBDEs), as they reproduced the experimental DeltaBDEs within less than 1 kcal/mol. Furthermore, the conventional radical stabilization enthalpy (RSE = - DeltaBDE) was found to be invalid to represent the trend of the radical stabilization because the molecule effect (ME) can contribute more to RSE than the radical effect (RE) for certain series (1 and 4). These radicals are in fact stabilized by electron-withdrawing groups (EWGs) but destabilized by electron-donating groups (EDGs), a phenomenon just opposite to the observed O-behavior of many other aromatic heteroatomic radicals studied so far. These radicals are thus assigned as a new radical class, Class counter-O (or O) according to Walter's terminology. Moreover, the excellent multi-parametric Hammett-type correlations indicated that the para substituent effects on BDEs originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. The atomic charge and spin population variations at a radical center due to p-G substitution were also found to correlate satisfactorily with REs. These results show that the spin delocalization effect should be explicitly considered in accounting for both DeltaBDEs and radical stabilization effects. Finally, an overall subsituent effect scale for radical stability has been proposed, and the overall substituent effect on the N-radicals was found to conform to the Capto-dative Principle.  相似文献   

8.
We are attempting to develop novel synthetic antioxidants aimed at retarding the effects of free-radical induced cell damage. In this paper we discuss the design strategy and report the synthesis of seven novel antioxidants, including six catechols and a benzylic phenol. The bond dissociation enthalpy (BDE) for the most active (weakest) OH bond in each molecule was calculated by theoretical methods, as well as the BDE for the semiquinone radical. Reaction rates with the nitrogen-centered free radical DPPH(*) were measured in ethyl acetate. The log of k(DPPH) for bimolecular reaction correlated well with the primary BDE. The correlation between rate constants and calculated BDEs shows that the BDE is a good predictor of antioxidant activity with DPPH(*), suggesting that our design criteria are useful and that these compounds should undergo further testing in cell cultures and in animal models.  相似文献   

9.
The electronic effects on O-H proton dissociation energies (PDEs) of para- and meta-substituted phenolic cation radicals have been investigated by density functional theory (DFT) using B3LYP function on a 6-31G(d, p) basis set. The calculation results indicate that electron-donating groups raise the O-H PDE and electron-withdrawing groups reduce the parameter, which are opposite to the electronic effects on O-H bond dissociation energies (BDEs). In addition, the electronic effects on O-H PDE are much stronger than those on O-H BDE. The differences result from the distinct electronic effects on stabilities of phenolic cation radicals and parent phenols. The finding also implies the proton-transfer process is unlikely a rate-controlling step for phenolic antioxidants to scavenge free radicals. Moreover, like O-H BDE, O-H PDE correlate better with the resonance parameter R+ than with field/inductive parameter F. Therefore, O-H PDEs of para-substituted phenolic cation radicals are mainly governed by the resonance effect.  相似文献   

10.
The homolytic C-H bond dissociation enthalpies (BDEs) of toluene and its para- and meta-substituted derivatives have been estimated by using the (RO)B3LYP/6-311++G(2df,2p)//(U)B3LYP/6-311G(d,p) procedure. The performance of two other hybrid functionals of DFT, namely, B3PWP91 and O3LYP, has also been evaluated using the same basis sets and molecules. Our computed results are compared with the available experimental values and are found to be in good agreement. The (RO)B3LYP and (RO)O3LYP procedures are found to produce reliable BDEs for the C-H bonds in toluene and the C-X (X = F, Cl) bond in alpha-substituted toluene (C6H5-CH2X) and their substituted derivatives. The substituent effect on the BDE values has been analyzed in terms of the ground-state effect and the radical effect. The effect of polarization of the C-H bond on the substituent effect is also analyzed. The BDE(C-H) and BDE(C-X) values for alpha-substituted (X = F and Cl) toluenes with a set of para substituents are presented for the first time.  相似文献   

11.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

12.
A kinetic and thermodynamic investigation of phenols para-substituted with thiyl (SR), sulfinyl (SOR), and sulfonyl (SO(2)R) groups and ortho-substituted with thiyl groups is reported. The effect of the sulfur substituents on the O-H bond dissociation enthalpy values, BDE(O-H), was measured by means of the EPR radical equilibration technique and the reactivity toward peroxyl radicals, k(inh), of these phenolic antioxidants was determined by inhibited autoxidation studies. An inverse correlation between these two parameters was found. A p-SMe substituent decreased the BDE(O-H) value to a lesser extent than a p-OMe group (-3.6 vs -4.4 kcal/mol), whereas the effect of the same groups in an ortho position showed an opposite trend (-0.85 vs -0.2 kcal/mol). The latter result is explained in terms of the different strength of the intramolecular hydrogen bond between the OH proton and the sulfur or oxygen substituents in ortho derivatives. ESI-MS analysis of the products formed by reacting the sulfides with peroxyl radicals from the azoinitiator AIBN revealed the formation of a complex mixture of products, which may play an important role in determining the overall antioxidant activity of the parent compounds.  相似文献   

13.
Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.  相似文献   

14.
The effect of water on the O-H bond dissociation enthalpy (BDE) of para-substituted phenols has been investigated by means of DFT calculations. It is shown that the experimental BDE values are fairly well-reproduced by simple B3LYP/6-31G* calculations carried out on the phenol/phenoxyl-water complexes taking into account only hydrogen-bonding (HB) interactions of water molecules with molecular sites (HB model). On the contrary, the BDE values computed with the polarizable continuum model (PCM/B3LYP/6-31G*)8 are overestimated by about 3-4 kcal/mol. Discrepancy between theory and experiment increases using the PCM method in addition to the HB model. Calculations show that, in general, the HB interaction with water molecules decreases the BDE of phenols bearing electron-releasing groups while increasing the BDE of phenols bearing electron-withdrawing substituents. This opposite effect is explained by considering the resonance structures with charge separation both in phenols and in phenoxyl radicals. With electron donors, the phenoxyl radical is preferentially stabilized by the HB acceptor interaction with two water molecules, while with electron acceptors the phenol is preferentially stabilized by the HB donor interaction with one water molecule.  相似文献   

15.
In the study we tried to answer two questions. First, does X-Z homolytic bond dissociation energy (BDE) of Y-C6H4-X-Z obey the Hammett relationship? Second, if it does what factors determine the magnitude and sign of the slope (rho+) of Hammett regression against substituent sigma(p)(+) constants? We collected a large number of X-Z BDEs for over one-thousand Y-C6H4-X-Z systems using the RMP2/6-311++G**//UB3LYP/6-31G* method. We found that remote substituent effects on X-Z BDEs are determined by both the ground effect (i.e. stabilization/destabilization of X-Z by the substituents) and the radical effect (i.e. stabilization/destabilization of X. by the substituents). The ground or radical effect is determined by the electron demand of X-Z or X. in the same way as the deprotonation enthalpy of HOOC-C6H4-X-Z or HOOC-C6H4-X. is affected by X-Z or X. . As a result, rho+ (BDE) for X-Z bond homolysis can be quantitatively predicted by using the change in deprotonation enthalpy from HOOC-C6H4-X-Z to HOOC-C6H4-X. .  相似文献   

16.
A detailed thermochemical analysis of the alpha-cleavage and decarbonylation reactions of acetone and several ketodiesters was carried out with the B3LYP/6-31G* density functional method. The heats of formation of several ground-state ketones and radicals were calculated at 298 K to determine bond dissociation energies (BDE) and radical stabilization energies (RSE) as a function of substituents. Results show that the radical-stabilizing abilities of the ketone substituents play a very important role on the thermodynamics of the alpha-cleavage and decarbonylation steps. An excellent correlation between calculated values and previous experimental observations suggests that photochemical alpha-cleavage and decarbonylation in crystals should be predictable from knowledge of excitation energies and the RSE of the substituent.  相似文献   

17.
The bond dissociation enthalpies (BDE) of several phenols containing electron-withdrawing substituents in the para position have been determined by means of the EPR radical equilibration technique. It has been found that CN, NO(2), CHO, COOR, and COOH induce an increase of the BDE value of the O-H bond, thus producing a worsening of the antioxidant activity of phenols, while Cl, Ph, and CH[double bond]CHPh show an opposite effect. The contributions of these substituents for the calculation of the BDE values in polysubstituted phenols by using the group additivity rule have also been derived. It is shown that this rule provides quite reliable predictions of bond strengths, so that the method can be conveniently used to estimate new data on substituted phenols.  相似文献   

18.
This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 +/- 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 +/- 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 +/- 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 +/- 0.5 kcal/mol).  相似文献   

19.
The effect of N-protonation and N-deprotonation on structure, NH bond dissociation enthalpies (BDEs) and stabilities of radicals formed on H-abstraction from nitrogen atom of carbamates and their thio- and seleno-analogs have been investigated. For those molecules where experimental results are available for comparison, the ROB3LYP/6-311++G(d,p)//B3LYP/6-31+G* theoretical level is in agreement within the estimated experimental uncertainty. The NH BDE of carbamates H2NC(=X)YCH3 [X = O; Y = O, S, Se] are higher but lower when X = S, Se and Y = O, S, Se in comparison to NH BDE of NH3. DFT calculations indicate that the NH bond dissociation enthalpies are decreased by protonation and deprotonation at nitrogen atom; but the effect of deprotonation is rather smaller than the protonation. The variations are analyzed in terms of stabilities of molecules, their protonated and deprotonated species along with their respective radicals. The electron delocalization from nitrogen, X and Y atoms, electrostatic interactions, conjugative interactions and spin delocalization are the important factors affecting the stability. The spin delocalization and shift of radical center to chalcogen X (X = S, Se) are the main determinants for radical stability.  相似文献   

20.
Relative acidities (Delta pK(a)) of phenols and oxidation potentials (Delta E(ox)) of the phenoxide anions have been calculated for nine para-substituted phenols using density functional theory. Solvent effects were incorporated using the conductor-like polarisable continuum method. Using the calculated Delta pK(a) and Delta E(ox) values in a thermodynamic cycle, the DeltaBDE (bond dissociation enthalpy) of the phenols were also determined with all values calculated to within 1.5 kcal mol(-1) of experiment. The Delta pK(a) and Delta E(ox) values were calculated for 6-hydroxy-2,2,5,7,8-pentamethylchroman (HPMC), a model for alpha-tocopherol for which there are no known experimental values. The acidity of this compound is raised by 2.4 pK(a) units and lowered by -0.79 V relative to phenol with a calculated Delta BDE of -14.9 kcal mol(-1). There is a negative correlation (r(2) = 0.86) between the Delta pK(a) and the Delta BDE values. A stronger and positive correlation is found between the Delta E(ox) (r(2) = 0.98) and the Delta BDE values. Using these correlations it is uncovered that hydrogen abstraction of phenols, as measured by the Delta BDE, is driven by electron transfer rather than by proton transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号