首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
Di(acylamino)pyridines successfully template the formation of hydrogen‐bonded rotaxanes through five‐component clipping reactions. A solid‐state study showed the participation of the pyridine nitrogen atom in the stabilization of the mechanical bond between the thread and the benzylic amide macrocycle. The addition of external complementary binders to a series of interlocked bis(2,6‐di(acylamino)pyridines) promoted restraint of the back and forward ring motion. The original translation can be restored through a competitive recognition event by the addition of a preorganized bis(di(acylamino)pyridine) that forms stronger ADA–DAD complexes with the external binders.  相似文献   

2.
Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.  相似文献   

3.
The ring opening of enantiomerically pure 3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane (1) with a variety of bulky aryllithium reagents was studied. Our results are not in total agreement with those obtained by others. In fact, several 2,6-disubstituted aryl groups were successfully appended to the phosphorus atom, furnishing the corresponding (N-ephedrino)phosphine boranes 2a-g with dr>99:1. However, when the attack on the phosphorus atom is hindered, deprotonation on the benzylic position occurs, leading to the formation of enantiomerically pure trans-(N-methylamino)(phenyl)(1-phenyl-1-propenyloxy)phosphine-P-borane (3). While the attack of 2,2'-dilithio-1,1'-biarenes leads to the corresponding (P-phenyl)phosphole derivatives (4i,j) and to [bis(N-ephedrino)](phenyl)phosphine-P-borane (5), the attack of 1,1'-dilithiometallocenes (M=Fe, Ru) leads to a separable diastereomeric mixture of 1,1'-bis[(N-ephedrino)(phenyl)phosphino-P-borane]metallocenes (2k,l/2k',l') with dr approximately 80:20.  相似文献   

4.
Binuclear Cp(2)M(2)(μ-C(8)H(8)) derivatives have been synthesized for M = V, Cr, Co, and Ni and have now been studied theoretically for the entire first row of transition metals from Ti to Ni. The early transition metal derivatives Cp(2)M(2)(μ-C(8)H(8)) (M = Ti, V, Cr. Mn) are predicted to form low-energy cis-Cp(2)M(2)(μ-C(8)H(8)) structures with a folded C(8)H(8) ring (dihedral angle ~130°) and short metal-metal distances suggesting multiple bonding. These predicted structures are close to the experimental structures for M = V, Cr with V≡V and Cr≡Cr bond lengths of ~2.48 and ~2.36 ?, respectively. The middle to late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Mn, Fe, Co, Ni) with a twisted μ-C(8)H(8) ring and no metal-metal bonding. The hapticity of the central μ-C(8)H(8) ring in such structures ranges from five for Mn and Fe to four for Co and three for Ni and thus depend on the electronic requirements of the central metal atom. This leads to the favored 18-electron configuration for both metal atoms in the singlet Fe, Co, and Ni structures but only 17-electron metal configurations in the triplet Mn structure. In addition, the late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Fe, Co, Ni), with the tub conformation of the μ-C(8)H(8) ring functioning as a tetrahapto (M = Fe, Co) or trihapto (M = Ni) ligand to each CpM group. A μ-C(8)H(8) ring in the tub conformation also bonds to two CpFe units as a bis(tetrahapto) ligand in both singlet and triplet cis-Cp(2)Fe(2)(μ-C(8)H(8)) structures.  相似文献   

5.
Four new bis(m-phenylene)-32-crown-10-based cryptands with different third bridges were prepared. Their complexes with paraquat derivatives were studied by proton NMR spectroscopy, mass spectrometry, and X-ray analysis. It was found that these cryptands bind paraquat derivatives very strongly. Specifically, a diester cryptand with a pyridyl nitrogen atom located at a site occupied by either water or a PF(6) anion in analogous complexes exhibited the highest association constant K(a) = 5.0 x 10(6) M(-1) in acetone with paraquat, 9000 times greater than the crown ether system. X-ray structures of this and analogous complexes demonstrate that improved complexation with this host is a consequence of preorganization, adequate ring size for occupation by the guest, and the proper location of the pyridyl N-atom for binding to the beta-pyridinium hydrogens of the paraquat guests. This readily accessible cryptand is one of the most powerful hosts reported for paraquats.  相似文献   

6.
Reaction of hybrid scorpionate/cyclopentadienyl ligands in the form of the lithium derivatives [Li(bpzcp)(THF)] [bpzcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl], [Li(bpztcp)(THF)] [bpztcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl], and the in situ-generated "Li(bpzpcp)" [bpzpcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-phenylethylcyclopentadienyl] with MCl3(THF)3 afforded the group 3 halide compounds [MCl2(bpzcp)(THF)] (M=Sc, 1; Y, 2), [MCl2(bpztcp)(THF)] (M=Sc, 3; Y, 4), and [MCl2(bpzpcp)(THF)] (M=Sc, 5; Y, 6). The H2O adduct of 4, [YCl2(bpztcp)(H2O)] (7), was formed when a solution of 4 was allowed to stand at room temperature in the presence of moisture. Complexes 1-7 adopt a pseudo-octahedral structure with heteroscorpionate ligands kappa2-NNeta5-Cp coordinated to the metal through the cyclopentadienyl group and two imino nitrogens of pyrazole rings. The alkyl heteroscorpionate scandium and yttrium complexes recently reported by our group, [M(CH2SiMe3)2(bpzcp)], react with 2,6-dimethylphenol and 3,5-dimethylphenol to give the bis(aryloxide) derivatives [M(OAr)2(bpzcp)] (M=Sc, OAr=2,6-dimethylphenoxide, 8; M=Y, OAr=2,6-dimethylphenoxide, 9; M=Y, OAr=3,5-dimethylphenoxide, 10). Complex 9 underwent an interesting hydrolysis process to give the tetranuclear complex [{Y(bpzcp)}(micro-OH)2(micro3-OH){Y(OAr)2}]2 (11). Variable-temperature 1H NMR experiments on 9 and 10 revealed a rapid fluxional exchange between coordinated and noncoordinated pyrazolyl rings, producing interconversion between the two enantiomers in which the scorpionate ligand can be coordinated in a kappa1-Neta5-Cp form. The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of 2, 7, and 11 were also established. Complexes 1 and 2 are active olefin polymerization catalysts after activation with methylaluminoxane. These compounds gave atactic polystyrenes with narrow molecular weight distribution (Mn/Mw 1.26-1.91) and with low molecular weights.  相似文献   

7.
Li C  Shu X  Li J  Chen S  Han K  Xu M  Hu B  Yu Y  Jia X 《The Journal of organic chemistry》2011,76(20):8458-8465
The binding behavior of substituted 1,4-bis(pyridinium)butane derivatives (X-Py(CH(2))(4)Py-X, X = H, 2-methyl, 3-methyl, 4-methyl, 2,6-dimethyl, 4-pyridyl, and 4-COOEthyl) 1(2+)-7(2+), with negatively charged carboxylatopillar[5]arene (CP5A) has been comprehensively investigated by (1)H NMR and 2D ROESY and UV absorption and fluorescence spectroscopy in aqueous phosphate buffer solution (pH 7.2). The results indicated that the position of the substituents attached on pyridinium ring dramatically affects the association constants and binding modes. 3- and 4-Substituted guests (1(2+), 3(2+), 4(2+), 6(2+), 7(2+)) form [2]pseudorotaxane geometries with CP5A host, giving very large association constants (>10(5) M(-1)), while 2,6-dimethyl-substituted 5(2+) forms external complex with relatively small K(a) values [(2.4 ± 0.3) × 10(3) M(-1)] because the 2,6-dimethylpyridinium unit is too bulky to thread the host cavity. Both of the binding geometries mentioned above are observed for 2(2+), having one methyl group in the 2-position of pyridinium. Typically, the association constant of [2]pseudorotaxane 1(2+)?CP5A exceeds 10(6) M(-1) in water, which is significantly higher than those of previously reported analogues in organic solvents. The remarkably improved complexation of bis(pyridinium) guests by the anionic host was due to electrostatic attraction forces and hydrophobic interactions.  相似文献   

8.
Treatment of protected 2'-deoxy-3',4'-unsaturated nucleosides derived from adenosine and uridine with difluorocarbene [generated from bis(trifluoromethyl)mercury and sodium iodide] gave fused-ring 2,2-difluorocyclopropane compounds. Stereoselective alpha-face addition to the dihydrofuran ring resulted from hindrance by the protected beta-anomeric nucleobases. A protected uracil compound was converted smoothly into the cytosine derivative via a 4-(1,2,4-triazol-1-yl) intermediate. Removal of the protecting groups gave new difluorocyclopropane-fused nucleoside analogues. The solid-state conformation of the nearly planar furanosyl ring in the uracil compound had a shallow 2E pucker, and a more pronounced 1E conformation was present in the furanosyl ring of the cytosine derivative.  相似文献   

9.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

10.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

11.
Reaction of lithium salts of anilido-imine ligands bearing bulky substituentes on the nitrogen donor atoms with trans-chloro(phenyl)bis(triphenylphosphane)nickel(II) results in the formation of two rare three-coordinate nickel(I) complexes [(Ar1N=CHC6H4NAr2)Ni(I)PPh3] (1: Ar1 = Ar2 = 2,6-i-Pr2C6H3; 2: Ar1 = 2,6-Me2C6H3, Ar2 = 2,6-i-Pr2C6H3). The molecular structures of complexes 1 and 2 have been confirmed by single crystal X-ray analyses. These two complexes exhibit paramagnetic properties as measured by their EPR and 1H NMR spectra. After being activated with methylaluminoxane (MAO) these complexes could polymerize norbornene to afford addition-type polynorbornene (PNB) with high molecular weight M(w) (10(6) g mol(-1)), catalytic activities being high, up to 2.82 x 10(7) g(PNB) mol(-1)(Ni) h(-1).  相似文献   

12.
Aware of the growing interest in materials that exhibit specific physiochemical properties and potential applications, we focused our work on modifying commercial agarose with polyfunctional dendrons capable of molecular recognition through hydrogen bonding. 2,6‐Di(acylamino)pyridine moieties within the internal superstructure of dendritic macromolecules have been reported to be capable of forming H‐bonded complexes with imide groups, such as barbituric acid and its derivatives. We report the synthesis of new dendrons possessing multiple 2,6‐di(acylamino)pyridinyl sites, each capable of molecular recognition, and the development of new polymeric supports of an activated agarose matrix by surface modification. From comparative studies of the beads modified by different dendrons, we found improved results in those dendritic supports possessing 2,6‐di(acylamino)pyridinyl moieties, except when their juxtaposition between the groups promoted inner H bonds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2779–2786, 2000  相似文献   

13.
The aryl-functionalized pyridylamine 2-(i)PrC(6)H(4)N(H)py (1) and bis(2-pyridyl)amines of the type ArN(py)(2) for Ar = Mes (2), 2,6-Et(2)C(6)H(3) (3), 2-(i)PrC(6)H(4) (4), 2,6-(i)Pr(2)C(6)H(3) (5), and 1-naph (6), have been prepared by the palladium-catalyzed cross-coupling of substituted anilines with 2-bromopyridine, and have been characterized by (1)H and (13)C NMR NMR, FTIR, MS, and TGA. Complexes of these new N-aryl bis(2-pyridyl)amines have been prepared for the acid salts [H{ArN(py)(2)}]BF(4) where Ar = Mes (7) and 2-(i)PrC(6)H(4) (8), and the dimeric bridged complexes [Cu{ArN(py)(2)}(μ-X)(Y)](2) where X/Y = Cl(-) and Ar = Ph (9), 2-(i)PrC(6)H(4) (10), and 1-naph (11), in addition to X = OH(-), Y = H(2)O and Ar = Mes (12). The olefin complexes [Cu(Ar-dpa)(styrene)]BF(4) for Ar = Ph (13), Mes (14), 2-(i)PrC(6)H(4) (15), and 1-naph (16), in addition to the norborylene complexes of Ar = Mes (17) and 2-(i)PrC(6)H(4) (18) have been prepared and characterized by (1)H and (13)C NMR, FTIR, and TGA. The crystal structures have been determined for compounds 1-17. Secondary amine 1 crystallizes in hydrogen-bonded head-to-tail dimers, while the N-aryl bis(2-pyridyl)amines 2-6 crystallize in a three-bladed propellar conformation, having nearly planar geometries about the amine nitrogen. The geometry about copper centers in the dimeric complexes 9-12 is distorted trigonal bypyramidal, with the axial positions occupied by one of the two pyridyl nitrogens and one of the bridging ligands (i.e., Cl or OH). The copper atoms in each of the olefin complexes 13-17 are coordinated to the two pyridine nitrogen atoms and the appropriate olefin; consistent with a pseudo three-coordinate Cu(I) cation. Distortion of pyridyl ring geometries about the copper centers, and concomitant bending of the aryl groups away from the CuN(amine) vectors were found to correlate with the steric bulk of the aryl group present in both dimeric and olefin complexes. Such distortion is also observed to a lesser extent in the acid salts as well. The (1)H and (13)C NMR spectra of [Cu(Ar-dpa)(olefin)]BF(4) exhibit an upfield shift in the olefin signal as compared to free olefin. A good correlation exists between the (1)H and (13)C NMR Δδ values and olefin dissociation temperatures, confirming that the shift of the olefin NMR resonances upon coordination is associated with the binding strength of the complex.  相似文献   

14.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

15.
Heteroleptic neutral mononuclear cuprous complexes with dipyrrin derivatives and phosphine mixed-ligands including 1,3,7,9-tetramethyldipyrrin (1), 5-phenyl-1,3,7,9-tetramethyldipyrrin (2), 2,8-dibromo-1,3,7,9-tetramethyldipyrrin (3), 1,9-dichloro-5-phenyldipyrrin (4), 1,9-dibromo-5-phenyldipyrrin (5), 5-pentafluorophenyl-1,3,7,9-tetramethyldipyrrin (6) and 1,5,9-triphenyldipyrrin (7) have been synthesized and fully characterized. The central Cu(i) atoms of these complexes in general formulas of Cu(1-6)(PPh(3))(2) (1a-6a) and Cu(1-6)(DPEphos) (1b-6b) [DPEphos = bis(2-diphenylphosphinophenyl)ether] all exhibit a pseudo-tetrahedral geometry, while complex Cu(7)(PPh(3)) (7a) is tricoordinated in a pyramidal conformation due to the large steric hindrance of ligand 7. The oxidation potentials assigned to oxidations of Cu(i)-Cu(ii) are extraordinarily low in the range of 0.36-1.02 V vs. Ag/AgCl compared with traditional [Cu(phen)(PP)](+) analogues. Their emission maxima range from 495 to 595 nm in dichloromethane at room temperature with quantum yields of 0.05-4.03% and lifetimes on the order of nanoseconds. Unlike the characteristic MLCT emission in cationic Cu(i) complexes, the emissions are assigned to the dipyrrin-centered intraligand charge transition (ILCT) based on the fact that the increased conjugation within the dipyrrinato anion leads to a weaker metal-ligand interaction, thus preventing the mixing of π orbitals of ligand and 3d orbitals of Cu(i) atom. This conclusion is also supported by electrochemical data and theoretical calculations.  相似文献   

16.
A new cryptand, bis(1,3,5-phenylene)tri(1,4,7,10-tetraoxadecyl) (3a), has been synthesized in good yield from bis(5-hydroxy-1,3-phenylene)-26-crown-8 (2a) and tri(ethylene glycol) ditosylate using pseudo-high dilution conditions. 3a forms a strong 1:1 complex with paraquat (1) in acetone solution with a high apparent association constant, 1.4 x 10(4) M(-)(1). A stoichiometry of 1:1 was also observed by mass spectrometry in the gaseous state. However, in the solid state, as determined by X-ray crystallography, the two complexes of 3a and the previously reported homologous cryptand, bis(1,3,5-phenylene)tri(1,4,7,10,13-pentaoxatridecyl) (3b), with paraquat (1) have 2:1 stoichiometry. A unique feature of these trimolecular pseudorotaxane-like complexes is that the guest occupies parts of the cavities of two cryptand molecules. For the first time it was found that in cryptand-based complexes, different stoichiometries are possible for the same host-guest pair.  相似文献   

17.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

18.
The condensation reactions between (4-amino-2,6-dichlorophenyl)bis(2, 4,6-trichlorophenyl)methyl radical and acetylacetone or 1, 4-bis(5-methyl-2-thienyl)-1,4-butanedione yield [2,6-dichloro-4-(2, 5-dimethyl-1-pyrrolyl)phenyl]bis(2,4,6-trichlorophenyl)methyl radical (3(*)()) and [2,6-dichloro-4-[2, 5-bis(5-methyl-2-thienyl)-1-pyrrolyl]phenyl]bis(2,4, 6-trichlorophenyl)methyl radical (4(*)()), respectively. EPR studies of both radicals 3(*)() and 4(*)() in CH(2)Cl(2) solution suggest a weak electron delocalization with coupling constant values of 1.25 and 1.30 G, respectively, with the six aromatic hydrogens. Their electrochemical behavior was analyzed by cyclic voltammetry. Both radicals show reversible reduction processes at E degrees = -0.69 V and -0.61 V versus SSCE, respectively, and anodic peak potentials at E(p)(a) = 1.10 and 0.72 V, respectively, versus SSCE at a scan rate (nu) of 200 mV s(-)(1), being reversible for radical 4(*)(). X-ray analysis of radical 3(*)() shows a high value (65 degrees ) of the dihedral angle between the 2,5-dimethylpyrrolidyl moiety and the phenyl ring. Smooth oxidation of radical 4(*)() in CH(2)Cl(2) containing trifluoroacetic acid gives an ionic diradical species with a weak electron interaction (|D/hc| = 0.0047 cm(-)(1)). A Curie plot of the Deltam(s)() = +/-2 signal intensity versus the inverse of the absolute temperature in the range between 4 and 70 K suggests a triplet or a nearly degenerate singlet-triplet ground state.  相似文献   

19.
Li X  Song H  Duan L  Cui C  Roesky HW 《Inorganic chemistry》2006,45(5):1912-1914
The reaction of LAl[eta2-(C2(SiMe3)2)] (1; L = HC[(CMe)(NDipp)]2, Dipp = 2,6-iPr2C6H3) with dioxygen leads to the elimination of bis(trimethylsilyl)acetylene and the formation of the corresponding aluminum monohydroxide via the oxidation of one of the CHMe2 groups on the Dipp ring.  相似文献   

20.
We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 μM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(μ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(μ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号