首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thorium(IV) and uranium(VI) chelate complexes with PAN, PAR, TAN and TAR have been studied in absolute ethanol. The uranyl ion forms complexes with PAN, PAR, TAN and TAR in the metal to ligand molar ratio of 1:1. Thorium(IV) forms complexes with PAR, TAR and TAN in the molar ratio of 1:2. In case of Th(IV)-PAN complexes the molar ratio is 1:2.4. The stability constants for all the above complexes have been worked out using the mole ratio method. The kinetics of aquation of Th(IV)-PAN complexes indicate that PAN acts as a tridentate ligand.  相似文献   

2.
Rates of electron transfer from a series of one-electron reductants to a nonheme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+), are enhanced as much as 10(8)-fold by addition of metal ions such as Sc(3+), Zn(2+), Mg(2+), and Ca(2+); the metal ion effect follows the Lewis acidity of metal ions. The one-electron reduction potential of [(N4Py)Fe(IV)(O)](2+) is shifted to a positive direction by 0.84 V in the presence of Sc(3+) ion (0.20 M).  相似文献   

3.
Reaction of 2-(4'-R-phenylazo)-4-methylphenols (R = OCH3, CH3, H, Cl, and NO2) with [Ru(dmso)(4)Cl2]affords a family of five ruthenium(III) complexes, containing a 2-(arylazo)phenolate ligand forming a six-membered chelate ring and a tetradentate ligand formed from two 2-(arylazo)phenols via an unusual C-C coupling linking the two ortho carbons of the phenyl rings in the arylazo fragment. A similar reaction with 2-(2'-methylphenylazo)-4-methylphenol with [Ru(dmso)(4)Cl2] has afforded a similar complex, in which one 2-(2'-methylphenylazo)-4-methylphenolate ligand is coordinated forming a six-membered chelate ring, and the other two ligands have undergone the C-C coupling reaction, and the coupled species is coordinated as a tetradentate ligand forming a five-membered N,O-chelate ring, a nine-membered N,N-chelate ring, and another five-membered chelate ring. Reaction of 2-(2',6'-dimethylphenylazo)-4-methylphenol with [Ru(dmso)(4)Cl2] has afforded a complex in which two 2-(2',6'-dimethylphenylazo)-4-methylphenols are coordinated as bidentate N,O-donors forming five- and six-membered chelate rings, while the third one has undergone cleavage across the N=N bond, and the phenolate fragment, thus generated, remains coordinated to the metal center in the iminosemiquinonate form. Structures of four selected complexes have been determined by X-ray crystallography. The first six complexes are one-electron paramagnetic and show rhombic ESR spectra. The last complex is diamagnetic and shows characteristic 1H NMR signals. All the complexes show intense charge-transfer transitions in the visible region and a Ru(III)-Ru(IV) oxidation on the positive side of SCE and a Ru(III)-Ru(II) reduction on the negative side.  相似文献   

4.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dicyclohexano-18-crown-6, benzo-18-crown-6, dibenzo-18-crown-6 or benzo-15-crown-5. The results demonstrate that these metal ions are extracted into chloroform as Th(PBI)(4) and UO(2)(PBI)(2) with HPBI alone and as Th(PBI)(4) . CE and UO(2)(PBI)(2) . CE in the presence of crown ethers (CE). The equilibrium constants of the above species have been deduced by non-linear regression analysis. The addition of a CE to the metal chelate system enhances the extraction efficiency and also improves the selectivities between thorium and uranium. IR spectral data of the extracted complexes were used to further clarify the nature of the complexes. The binding to the CEs by Th(PBI)(4) and UO(2)(PBI)(2) follows the CE basicity sequence but with DC18C6 and DB18C6, steric effects become more important.  相似文献   

5.
A six-coordinate oxovanadium(V) thiolate complex and an eight-coordinate non-oxovanadium thiolate complex, [PPh(4)][VO(PS3')(OCH(3))] (1) and [NEt(4)][V(PS3')(2)] (2) (PS3' = P(C(6)H(3)-3-Me(3)Si-2-S)(3)(3-)), respectively, have been isolated and structurally characterized. The former belongs to a limited collection of oxovanadium(V) thiolate complexes. The latter has an unusual coordination number of eight. More importantly, its consensus electronic structure derived from its spectroscopic data should be considered as the resonance forms of V(V)-thiolate and V(IV)-thiyl radical species. This implies that V(IV)-thiyl radical can maintain a stable presence in biological systems.  相似文献   

6.
The ionization constants of ferron (7-iodo-8-hydroxyquinoline-5-sulphonic acid) and the interaction between Th(IV) and ferron have been studied spectrophotometrically at 25° and ionic strength of 0.1. The ionization constants were found to be pK1=2.41±0.01, pK2=7.10±0.01. The Th(IV)-ferron chelate in aqueous solution of pH 5.0 exhibited a characteristic absorption maximum at 365 mμ. The composition of Th(IV)-ferron chelate was 1:4 mole ratio of Th(IV) ion and ferron, and the stability constant (log Kg) was 26.22±0.16.  相似文献   

7.
The coordination chemistry of actinide(IV) ions with hydroxypyridinone ligands has been initially explored by examining the complexation of Th(IV) ion with bidentate PR-1,2-HOPO (HL(1)()), PR-Me-3,2-HOPO (HL(2)()), and PR-3,4-HOPO-N (HL(3)()) ligands. The complexes Th(L(1)())(4), Th(L(2)())(4), and Th(L(3)())(4) were prepared in methanol solution from Th(acac)(4) and the corresponding ligand. Single-crystal X-ray diffraction analyses are reported for the free ligand PR-Me-3,2-HOPO (HL(2)()) [Ponemacr;, Z = 8, a = 8.1492(7) A, b = 11.1260(9) A, c = 23.402(2) A, alpha = 87.569(1) degrees, beta = 86.592(1) degrees, gamma = 87.480(1) degrees ], and the complex Th(L(2)())(4).H(2)O [Pna2(1) (No. 33), Z = 4, a = 17.1250(5) A, b = 12.3036(7) A, c = 23.880 (1) A]. A comparison of the structure of the metal complex Th-PR-Me-3,2-HOPO with that of free ligand PR-Me-3,2-HOPO reveals that the ligand geometry is the same in the free ligand and in the metal complex. Amide hydrogen bonds enhance the rigidity and stability of the complex and demonstrate that the Me-3,2-HOPO ligands are predisposed for metal chelation. Solution thermodynamic studies determined overall formation constants (log beta(140)) for Th(L(1)())(4), Th(L(2)())(4), and Th(L(3)())(4) of 36.0(3), 38.3(3), and 41.8(5), respectively. Species distribution calculations show that the 4:1 metal complex Th(L)(4) is the dominant species in the acidic range (pH < 6) for PR-1,2-HOPO, in weakly acidic to physiological pH range for PR-Me-3,2-HOPO and in the high-pH range (>8) for PR-3,4-HOPO-N. This finding parallels the relative acidity of these structurally related ligands. In the crystal of [Th(L(2)())(4)].H(2)O, the chiral complex forms an unusual linear coordination polymer composed of linked, alternating enantiomers.  相似文献   

8.
Three polynuclear thorium(IV) molecular complexes have been synthesized under ambient conditions from reactions of an amorphous Th precipitate, obtained via hydrolysis, with carboxylate functionalized ligands. The structures of Th(6)(OH)(4)O(4)(H(2)O)(6)(HCO(2))(12)·nH(2)O (1), Th(6)(OH)(4)O(4)(H(2)O)(6)(CH(3)CO(2))(12)·nH(2)O (2), Th(6)(OH)(4)O(4)(H(2)O)(6)(ClCH(2)CO(2))(12)·4H(2)O (3) each consist of a hexanuclear Th core wherein six 9-coordinate Th(IV) cations are bridged by four μ(3)-hydroxo and four μ(3)-oxo groups. Each Th(IV) center is additionally coordinated to one bound "apical" water molecule and four oxygen atoms from bridging carboxylate functionalized organic acid units. "Decoration" of the cationic [Th(6)(μ(3)-O)(4)(μ(3)-OH)(4)](12+) cores by anionic shells of R-COO(-) ligands (R = H, CH(3), or CH(2)Cl) terminates the oligomers and results in the formation of discrete, neutral molecular clusters. Electronic structure calculations at the density functional theory level predicted that the most energetically favorable positions for the protons on the hexanuclear core result in the cluster with the highest symmetry with the protons separated as much as possible. The synthesis, structure, and characterization of the materials are reported.  相似文献   

9.
Four Th(IV) hydroxide/oxide clusters have been synthesized from aqueous solution. The structures of [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(15)(SeO(4))(8)·7.5H(2)O] (1), [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(17)(SeO(4))(8)·nH(2)O] (2), [Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)] (3), and Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)·nH(2)O (4) were determined using single crystal X-ray diffraction. Each structure consists of an octanuclear core, [Th(8)O(4)(OH)(8)](16+), that is built from eight Th(IV) atoms (four Th in a plane and two up and two down) linked by four "inner" μ(3)-O and eight "outer" μ(2)-OH groups. Compounds 3 and 4 additionally contain mononuclear [Th(H(2)O)(5)(SeO(4))(4)](4-) units that link the octamers into an extended structure. The octanuclear units are invariably complexed by two selenate anions that sit in two cavities formed by four planar Th(IV) and four extra-planar Th(IV) atoms, thus making [Th(8)O(4)(OH)(8)(SeO(4))(2)](12+) a common building block in 1-4. However, changes in hydration as well selenate coordination give rise to structural differences that are observed in the extended structures of 1-4. The compounds were also characterized by Raman spectroscopy. Density functional theory calculations were performed to predict the geometries, vibrational frequencies, and relative energies of different structures. Details of the calculated structures are in good agreement with experimental results, and the calculated frequencies were used to assign the experimental Raman spectra. On the basis of an analysis of the DFT results, the compound Th(8)O(8)(OH)(4)(SeO(4))(6) was predicted to be a strong gas phase acid but is reduced to a weak acid in aqueous solution. Of the species studied computationally, the dication Th(8)O(6)(OH)(6)(SeO(6))(6)(2+) is predicted to be the most stable in aqueous solution at 298 K followed by the monocation Th(8)O(7)(OH)(5)(SeO(6))(6)(+).  相似文献   

10.
Three Th(IV) sulfates, two new and one previously reported, have been synthesized from aqueous solution. In all of the compounds, the sulfate anions coordinate the Th(4+) metal center(s) in a monodentate manner with Th-S distances of 3.7-3.8 ?. Th(SO(4))(2)(H(2)O)(7)·2(H(2)O) (1; P2(1)/m, a = 7.224(1) ?, b = 12.151(1) ?, c = 7.989(1) ?, ss =98.289(2)°) and Th(4)(SO(4))(7)(H(2)O)(7)(OH)(2)·H(2)O (2; Pnma, a = 18.139(2) ?, b = 11.173(1) ?, c = 14.391(2) ?) each contain 9-coordinate monomeric (1,2) and dimeric (2) Th(IV) cations in monocapped square antiprism geometry. Alternatively, Th(OH)(2)SO(4) (3; Pnma, a = 11.684(1) ?, b = 6.047(1) ?, c = 7.047(1) ?) is built from chains of hydroxo-bridged, 8-coordinate Th(4+) centers. Whereas 1 adopts a molecular structure, 2 and 3 both exhibit 3D architectures. Differences in the dimensionality and the topology of 1-3 are manifested in the local coordination environment about the Th(IV) centers, the formation of oligomeric Th(4+) species, and the extended connectivity of the sulfate ligands. Herein, we report the syntheses and characterization of 1-3 as well as the atomic correlations of 1 in solution, as determined by high-energy X-ray scattering (HEXS).  相似文献   

11.
Many transition-metal complexes mediate DNA oxidation in the presence of oxidizing radiation, photosensitizers, or oxidants. The DNA oxidation products depend on the nature of the metal complex and the structure of the DNA. Earlier we reported trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum (trans-Pt(d,l)(1,2-(NH(2))(2)C(6)H(10))Cl(4), [Pt(IV)Cl(4)(dach)]; dach = diaminocyclohexane) oxidizes 2'-deoxyguanosine 5'-monophosphate (5'-dGMP) to 7,8-dihydro-8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-5'-dGMP) stoichiometrically. In this paper we report that [Pt(IV)Cl(4)(dach)] also oxidizes 2'-deoxyguanosine 3'-monophosphate (3'-dGMP) stoichiometrically. The final oxidation product is not 8-oxo-3'-dGMP, but cyclic (5'-O-C8)-3'-dGMP. The reaction was studied by high-performance liquid chromatography, (1)H and (31)P nuclear magnetic resonance, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The proposed mechanism involves Pt(IV) binding to N7 of 3'-dGMP followed by nucleophilic attack of a 5'-hydroxyl oxygen to C8 of G and an inner-sphere, 2e(-) transfer to produce cyclic (5'-O-C8)-3'-dGMP and [Pt(II)Cl(2)(dach)]. The same mechanism applies to 5'-d[GTTTT]-3', where the 5'-dG is oxidized to cyclic (5'-O-C8)-dG. The Pt(IV) complex binds to N7 of guanine in cGMP, 9-Mxan, 5'-d[TTGTT]-3', and 5'-d[TTTTG]-3', but no subsequent transfer of electrons occurs in these. The results indicate that a good nucleophilic group at the 5' position is required for the redox reaction between guanosine and the Pt(IV) complex.  相似文献   

12.
Salicylidene-o-aminobenzothiol and its 5-chloro and 5-bromo derivatives, dibasic tridentate Schiff bases, dervied from the condensation of o-aminothiol and Salicylaldehyde, 5-chloro salicylaldehyde and 5-bromo salicylaldehyde, were used for coordination with Zr(IV), Th(IV) and UO2(VI) metal inos. The I:I (metal-ligand) stoichiometry of these complexes is shown by elemental analysis and conductometric titrations. Molecular structure of these complexes are proved by Infra-red spectroscopy and thermogravimetric analysis. Magnetic susceptibility measurements of Zr(IV), Th(IV) and UO2(VI) complexes show their diamagnetic and octahedral geometry. Results show that all the complexes have solvent molecules in coordination with metal ion.  相似文献   

13.
The speciation in the mixed Th(IV)-Fe(III) system has been studied in aqueous solution in the pH range of 2.0-4.8. In the individual systems iron(III) and thorium(IV) hydrolyze easily and hydrolysis products precipitate at approximately pH ≥ 2.0 and 4.0, respectively, at the metal concentrations used in this study, 0.02-0.05 mol dm(-3). In the mixed Th(IV)-Fe(III) system precipitation of ferrihydrite takes place after months of storage at low pH values, 2.0 (six-line ferrihydrite) and 2.3 (two-line ferrihydrite), as identified by X-ray powder diffraction. In the pH range 2.9-4.5 no precipitation was observed after 24 months. Two thorium(IV)-iron(III) solutions with pH = 2.9, C(Th) = 0.02 and 0.05 mol dm(-3) and C(Fe) = 0.02 mol dm(-3), were studied by extended X-ray absorption fine structure, EXAFS, using the Fe K and Th L(3) edges, and a third solution with pH = 2.9 and C(Th) = C(Fe) = 0.40 mol dm(-3) by large angle X-ray scattering, LAXS, to determine the structure of the predominating species. A heteronuclear hydrolysis complex with the composition [Th(2)Fe(2)(μ(2)-OH)(8)(H(2)O)(12)](6+) is proposed to form in solution, with Th···Th, Th···Fe and Fe···Fe distances of 3.94(2) and 3.96(2), 3.41(3) and 3.43(2), 3.04(2) and 3.02(4) ?, as determined by EXAFS and LAXS, respectively.  相似文献   

14.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

15.
Light-activation of metal ion complexes to cytotoxic species is of interest due to the potential use in anticancer therapy. Two platinum complexes, trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)] (3) and trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] (4) were irradiated with either UV (λ = 366 nm) or white fluorescent light and the various photochemical and photobiological phenomena were characterized. HPLC coupled to UV/Vis and MS detection was used to identify photochemical species resulting from irradiation of 4 with UV and white light. These studies showed that various Pt(IV) and Pt(II) products formed during the photolysis. The mass spectra of Pt(IV) complexes showed Pt ions in both the positive as well as the negative mode while Pt(II) complexes resulted in only positively charged Pt(III) ions. Since cellular DNA is considered to be a key target for platinum antitumor drugs, the irreversible platination of calf thymus DNA by the photoactivated Pt(IV) complexes was followed by Atomic Adsorption spectrometry (AAS). The effect of adding chloride or biological reducing agents glutathione (GSH) and ascorbic acid on the rates of DNA platination where also studied. Upon activation by light, both compounds show similar binding behaviour to DNA, but the rates of DNA platination for 3 were faster than for 4. Both chloride and GSH protected DNA from platination by the photoactivated compounds; consistent with the trapping of reactive aqua-Pt species. The presence of ascorbate increased the level of platinum bound to DNA for photoactivated 4 but not for 3. Without photoactivation, little or no DNA platination was observed, either with or without ascorbate or GSH. Cytotoxicity studies with two human cancer cell lines underline the photochemotherapeutic potential of these compounds. Striking is the increase in cytotoxic potency with the replacement of an ammine by a pyridine ligand.  相似文献   

16.
The tetrameric hydrolysis products of zirconium(IV) and hafnium(IV), the zirconyl(IV) and hafnyl(IV) ions, [M(4)(OH)(8)(OH(2))(16)(8+)], often labelled MO(2+).5H(2)O, are in principle the only zirconium(IV) and hafnium(IV) species present in aqueous solution without stabilising ligands and pH larger than zero. These complexes are furthermore kinetically very stable and do not become protonated even after refluxing in concentrated acid for at least a week. The structures of these complexes have been determined in both solid state and aqueous solution by means of crystallography, EXAFS and large angle X-ray scattering (LAXS). Each metal ion in the [M(4)(OH)(8)(OH(2))(16)](8+) complex binds four hydroxide ions in double hydroxo bridges, and four water molecules terminally. The M-O bond distance to the hydroxide ions are markedly shorter, ca. 0.12 A, than to the water molecules. The hydrated zirconium(IV) and hafnium(IV) ions only exist in extremely acidic aqueous solution due to their very strong tendency to hydrolyse. The structure of the hydrated zirconium(IV) and hafnium(IV) ions has been determined in concentrated aqueous perchloric acid by means of EXAFS, with both ions being eight-coordinated, most probably in square antiprismatic fashion, with mean Zr-O and Hf-O bond distances of 2.187(3) and 2.160(12) A, respectively. The dimethyl sulfoxide solvated zirconium(IV) and hafnium(IV) ions are square antiprismatic in both solid state and solution, with mean Zr-O and Hf-O bond distances of 2.193(1) and 2.181(6) A, respectively, in the solid state. Hafnium(IV) chloride does not dissociate in N,N'-dimethylpropyleneurea, dmpu, a solvent with good solvating properties but with a somewhat lower permittivity (epsilon= 36.1) than dimethyl sulfoxide (epsilon= 46.4), and an octahedral HfCl(4)(dmpu)(2) complex is formed.  相似文献   

17.
The interaction between diethylenetriaminepentaacetic acid (DTPA or HsZ) and Ce(III) and Th(IV) ions has been investigated spectrophotometrically in aqueous solution at an ionic strength of 0.1 and for various temperatures. It has been found that the Ce(III)-DTPA chelate (1:1) exhibited a characteristic absorption maximum at 297 nm, and the optimum pH range is between 3.4 to 4.4. The absorption of Ce(III)-DTPA chelate is considerably diminished by adding small amounts of Th(IV) ions. This phenomenon was used to evaluate the formation constant of Th(IV)-DTPA chelate (1:1). The formation constants and the thermodynamic properties characterizing the formation of the chelates have been calculated at 25°. The results are as follows:   相似文献   

18.
Mixed-ligand complexes of Pt(II) and Pt(IV) with 2,6-diaminopurine and 6-thioguanine were synthesized and characterised. The complexes were prepared in acidic and basic media. The binding of the ligands to the metal ion varies according to the pH of the medium. Thus, in the complexes of 6-thioguanine, the ligand acts as a monodentate ligand coordinating through the neutral C6-SH group in the acidic medium and in the basic medium as a bidentate ligand binding to the metal ion through C6S? and N7, forming a five-membered chelate ring. In an acidic medium 2,6-diaminopurine forms mononuclear complexes with Pt(II) and Pt(IV) binding through N7. In a basic medium binuclear hydroxobridged complexes are formed with Pt(IV) and the ligand is monodentate, coordinating through N7.  相似文献   

19.
Many transition metal complexes mediate DNA oxidation in the presence of oxidizing radiation, photosensitizers, or oxidants. The final DNA oxidation products vary depending on the nature of metal complexes and the structure of DNA. Here we propose a mechanism of oxidation of a nucleotide, deoxyguanosine 5'-monophosphate (dGMP) by trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum (trans-Pt(d,l)(1,2-(NH(2))(2)C(6)H(10))Cl(4), [Pt(IV)Cl(4)(dach)]; dach = diaminocyclohexane) to produce 7,8-dihydro-8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-dGMP) stoichiometrically. The reaction was studied by high-performance liquid chromatography (HPLC), (1)H and (31)P nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). The proposed mechanism involves Pt(IV) binding to N7 of dGMP followed by cyclization via nucleophilic attack of a phosphate oxygen at C8 of dGMP. The next step is an inner-sphere, two-electron transfer to produce a cyclic phosphodiester intermediate, 8-hydroxyguanosine cyclic 5',8-(hydrogen phosphate). This intermediate slowly converts to 8-oxo-dGMP by reacting with solvent H(2)O.  相似文献   

20.
Three novel Re(iv) compounds, the mononuclear complex Bu(4)N[ReBr(5)(Hpyzc)] (1) and the heterobimetallic complexes [ReBr(5)(mu-pyzc)M(dmphen)(2)].2CH(3)CN [M = Co (2), Ni (3)] (Hpyzc = 2-pyrazinecarboxylic acid, dmphen = 2,9-dimethyl-1,10-phenanthroline), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. The structure of 1 consists of [ReBr(5)(Hpyzc)](-) complex anions and tetrabutylammonium cations, Bu(4)N(+). The Re(iv) is surrounded by five bromide anions and a N-donor Hpyzc monodentate ligand, in a distorted octahedral environment. The structures of 2 and 3 consist of dinuclear units [ReBr(5)(mu-pyzc)M(dmphen)(2)], with the metal ions linked by a pyzc bridge ligand, being bidentate toward M(II) and monodentate toward Re(IV). The environment of Re(IV) is the same as in 1, whereas M(II) is six-coordinate, being surrounded by four nitrogen atoms of two bidentate dmphen ligands and one oxygen atom and one nitrogen atom of the pyzc anion. The magnetic properties of 1-3 were investigated in the temperature range 2.0-300 K. 1 shows the expected magnetic behavior for a mononuclear Re(IV) complex with a weak intermolecular antiferromagnetic coupling at low temperatures. The bimetallic complexes exhibit an intramolecular ferromagnetic coupling between Re(IV) and the M(II) ion (Co, Ni).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号