共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions of the nine most significant nucleobases (thymine, uracil, dihydrouracil, cytosine, adenine, guanine, diaminopurine, xanthine, hypoxanthine, in their deprotonated forms) with zinc and with themselves in pyrazolylborate zinc complexes Tp(Cum,Me)Zn-base and Tp(Ph,Me)Zn-base are described. Except for guanine, the complexes Tp*Zn-base could be isolated in all cases. Structure determinations could be performed for seven of the eight product types. Except for dihydrouracil and xanthine, the zinc ion is attached to that nitrogen of the base which in nucleosides bears the sugar moiety. In the solid state, all zinc-bound nucleobases are involved in hydrogen bonding interactions. Except for xanthine, this includes homo base pairing across a crystallographic inversion center. 相似文献
2.
Jové FA Pariya C Scoblete M Yap GP Theopold KH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(4):1310-1318
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å. 相似文献
3.
One of the paradigms of Zn2+ metallobiochemistry is that coordination of water to Zn2+ provides a mechanism of activation that involves lowering the pKa by approximately 7 pH units. This idea has become central to the development of mechanisms of action for zinc metalloproteins. However, the direct measurement of the pKa of water bound to Zn2+ in a metalloprotein has yet to be accomplished. Developing models for Zn2+-OH2 species has been a significant challenge, but we have utilized solid-state 67Zn NMR spectroscopy as a means to characterize one of the few examples of water bound to mononuclear tetrahedral Zn2+: ([Tp(But,Me)]Zn(OH2))[HOB(C6F5)3]. The measured quadrupole coupling (Cq) constant is 4.3 MHz with an asymmetry parameter of etaq of 0.6. Likewise, due to the small value of Cq, anisotropic shielding also contributed to the observed 67Zn NMR lineshape. As expected, the computed values of the magnetic resonance parameters depend critically on the nature of the anion. The predicted value of Cq for ([Tp(But,Me)]Zn(OH2))[HOB(C6F5)3] is -4.88 MHz. We discuss the results of these calculations in terms of the nature of the anion, the local electrostatics, and its subsequent hydrogen bonding to [Tp(But,Me)]Zn(OH2)+. 相似文献
4.
del Rio D Resa I Rodriguez A Sánchez L Köppe R Downs AJ Tang CY Carmona E 《The journal of physical chemistry. A》2008,112(42):10516-10525
The measured Raman and IR spectra of solid, polycrystalline bis(pentamethylcyclopentadienyl)dizinc, (eta(5)-C5Me5)2Zn2, 1, and bis(pentamethylcyclopentadienyl)monozinc, (eta(5)-C5Me5)(eta(1)-C5Me5)Zn, 8, are reported in some detail. The IR spectra of the vapors of 1 and 8 each trapped in a solid Ar matrix at 12 K confirm the essentially molecular character of the solids. The experimental results have been interpreted with particular reference (i) to the corresponding spectra of (68)Zn-enriched samples of the compounds, and (ii) to the spectra simulated by density functional theory (DFT) calculations at the B3LYP level. The marked differences of structure of 1 and 8 contrast with the relatively close similarity of their vibrational spectra, disparities being revealed only on detailed scrutiny, including the effects of (68)Zn enrichment, and primarily at wavenumbers below 1000 cm(-1). The Zn-Zn stretching motion of 1 features not as a single, well-defined mode identifiable with intense Raman scattering but in several normal modes which respond in varying degrees to (68)Zn substitution. A stretching force constant of 1.42 mdyne A(-1) has been estimated for the Zn-Zn bond of 1. 相似文献
5.
Uehara K Hikichi S Inagaki A Akita M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(9):2788-2809
A series of dinuclear complexes, [Tp(R)M--M'L(n)] [Tp(iPr(2) )M--Co(CO)(4) (1; M=Ni, Co, Fe, Mn); Tp(#)M--Co(CO)(4) (1'; M=Ni, Co); Tp(#)Ni--RuCp(CO)(2) (3')] (Tp(iPr(2) )=hydrotris(3,5-diisopropylpyrazolyl)borato; Tp(#) (Tp(Me(2),4-Br))=hydrotris(3,5-dimethyl-4-bromopyrazolyl)borato), has been prepared by treatment of the cationic complexes [Tp(iPr(2) )M(NCMe)(3)]PF(6) or the halo complexes [Tp(#)M--X] with the appropriate metalates. Spectroscopic and crystallographic characterization of 1-3' reveals that the tetrahedral, high-spin Tp(R)M fragment and the coordinatively saturated carbonyl-metal fragment (M'L(n)) are connected only by a metal-metal interaction and, thus, the dinuclear complexes belong to a unique class of xenophilic complexes. The metal-metal interaction in the xenophilic complexes is polarized, as revealed by their nu(CO) vibrations and structural features, which fall between those of reference complexes: covalently bonded species [R--M'L(n)] and ionic species [M'L(n)](-). Unrestricted DFT calculations for the model complexes [Tp(H(2) )Ni--Co(CO)(4)], [Tp(H(2) )Ni--Co(CO)(3)(PH(3))], and [Tp(H(2) )Ni--RuCp(CO)(2)] prove that the two metal centers are held together not by covalent interactions, but by electrostatic attractions. In other words, the obtained xenophilic complexes can be regarded as carbonylmetalates, in which the cationic counterpart interacts with the metal center rather than the oxygen atom of the carbonyl ligand. The xenophilic complexes show divergent reactivity dependent on the properties of donor molecules. Hard (N and O donors) and soft donors (P and C donors) attack the Tp(R)M part and the ML(n) moiety, respectively. The selectivity has been interpreted in terms of the hard-soft theory, and the reactions of the high-spin species 1-3' with singlet donor molecules should involve a spin-crossover process. 相似文献
6.
The tunnel splitting of the librational ground state and the torsional frequencies of the dihydrogen ligand in Tp(Me)()2RhH(2)(eta(2)-H(2)) (Tp(Me)()2 = hydrotris(3,5-dimethylpyrazolyl)borate) were measured using inelastic neutron scattering spectroscopy. The barrier for the rotation of the H(2) ligand and its H-H separation, calculated from these data, are 0.56(2) kcal/mol and 0.94 ?, respectively. These values indicate that pi-back-donation from the Tp(Me)()2RhH(2) fragment to H(2) is relatively weak and/or the interaction between the coordinated dihydrogen molecule and the two cis-hydride ligands significantly lowers the barrier for H(2) rotation. 相似文献
7.
Hillier AC Zhang X Maunder GH Liu SY Eberspacher TA Metz MV McDonald R Domingos A Marques N Day VW Sella A Takats J 《Inorganic chemistry》2001,40(20):5106-5116
Reaction of LnI2 (Ln = Sm, Yb) with two equivalents of NaTp(Me2) or reduction of Eu(Tp(Me2))2OTf gives good yields of the highly insoluble homoleptic Ln(II) complexes, Ln(Tp(Me2))2 (Ln = Sm (1a), Yb (2a), Eu (3a)). Use of the additionally 4-ethyl substituted Tp(Me2,4Et) ligand produces the analogous, but soluble Ln(Tp(Me2,4Et))2 (1-3b) complexes. Soluble compounds are also obtained with the Tp(Ph) and Tp(Tn) ligands (Tn = thienyl), Ln(Tp(Ph))2 (Ln = Sm, 1c; Yb, 2c) and Ln(Tp(Tn))2 (Ln = Sm, 1d; Yb, 2d). To provide benchmark parameters for structural comparison the series of Sm(Tp(Me2))2X complexes (X = F, 1e; Cl, 1f; Br, 1g; I, 1h; BPh4, 1j) were prepared either via oxidation of the Sm(Tp(Me2))2 or salt metathesis from SmX3 (X = Cl, Br, I). The solid-state structures of 1-3a, 1b, 1-2c and 1e, 1f, 1h, and 1j were determined by single-crystal X-ray diffraction. The homoleptic bis-Tp complexes are all six-coordinate with trigonal antiprismatic geometries, planes of the kappa(3)-Tp ligands are parallel to one another. In the series of Sm(Tp(Me2))2X complexes the structure changes from seven-coordinate molecular compounds, with intact Sm-X bonds, for X = F, Cl, to six-coordinate ionic structures [Sm(Tp(Me2))2]X (X = I, BPh4), suitable crystals of the bromide compound could not be obtained. The dependence of the structures on the size of X is understandable in terms of the interplay between the size of the cleft that the [Sm(Tp(Me2))2](+) fragment can make available and the donor ability of the anionic group toward the hard Sm(III) center. 相似文献
8.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12. 相似文献
9.
The synthesis of Me(6)Te in 1990 stimulated the exploration of hexamethylchalcogen potential energy surfaces. This earlier ab initio work focused only on the D(3) conformers, but it has been noted that the pseudooctahedral X(CH(3))(6) compounds show either D(3) or S(6) symmetry. Here are reported the results of an ab initio molecular orbital study of the hexamethylchalcogens confined to S(6) symmetry. Stationary points were found for each of the three hexamethylchalcogens studied and were shown to be minima for the two larger hexamethylchalcogens. Each of the S(6) stationary points found was energetically higher lying than the earlier reported D(3) counterpart. These energy differences are discussed in terms of nuclear repulsion and molecular orbital bonding considerations. 相似文献
10.
《Polyhedron》2004,23(2-3):429-438
The electronic structures of the potassium salts of the homoscorpionates hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp*, 1), hydrotris(4-chloro-3,5-dimethylpyrazol-1-yl)borate (Tp*Cl, 2) and hydrotris(3,5-bis(trifluoromethyl)pyrazol-1-yl)borate (Tp(CF3)2, 3) are compared using gas-phase photoelectron spectroscopy and density functional theory (DFT). DFT calculations also are reported for the generic scorpionate potassium (hydrotris(pyrazol-1-yl)borate) (KTp). This is the first such experimental probe of the electronic structure of halogen containing scorpionate ligands and subtle differences in the ionizations from the frontier orbitals in the photoelectron spectra of 1 and 3 are observed that give insight into the influence of substituents upon metal–scorpionate bonding. Distinct assignments of the ionizations from the nitrogen σ-donor orbitals (σN) and σBH molecular orbitals are possible experimentally by the use of variable (He I and He II) excitation energies. The experimentally observed first ionization energy of 3 is stabilized by ∼2.0 eV relative to 1 due to the strong electron withdrawing effect of the trifluoromethyl groups. The photoelectron spectroscopic studies of NaTp(CF3)2 further confirm the assignments of ionizations from σN orbitals for 3 associated with the a and e sets in C3 symmetry. The X-ray crystal structure of 2 as the (μ-aqua)3(potassium hydrotris(4-chloro-3,5-dimethylpyrazol-1-yl)borate)2 dimer is also reported. 相似文献
11.
Antunes MA Pereira LC Santos IC Mazzanti M Marçalo J Almeida M 《Inorganic chemistry》2011,50(20):9915-9917
The addition of 2,2'-bipyridine to [U(Tp(Me2))(2)I] (1) results in the displacement of the iodide and the formation of the cationic uranium(III) complex [U(Tp(Me2))(2)(bipy)]I (2). This compound was isolated as a dark-green solid in good yield and characterized by IR and NMR spectroscopies, and its molecular structure was determined by single-crystal X-ray diffraction. Studies of its magnetic properties revealed a frequency dependence of magnetization with a blocking temperature of 4.5 K and, at lower temperatures, a slow relaxation of magnetization with an energy barrier of 18.2 cm(-1), characteristic of single-molecule-magnet behavior. 相似文献
12.
本文在室温条件下,甲醇体系中,设计并首次合成了2种蝎型半夹心钒氧配合物Tp*VO(OOCHCCHCOOCH3)(pz*H)(1)和Tp*VO(DMSO)(NCS)(2)(Tp*=三聚3,5-二甲基吡唑硼酸根),通过元素分析、红外光谱对配合物进行了表征,利用X-射线单晶衍射方法对晶体结构进行了测定,并结合从头计算结果进一步分析了配合物的稳定性及分子中配键的共价特征。分析结果表明,配合物1和2的稳定性相近,且中心钒原子周围的价键类型都属于共价键范畴,键序分析结果与晶体结构测定的键长结果是一致的。 相似文献
13.
Bergquist C Fillebeen T Morlok MM Parkin G 《Journal of the American Chemical Society》2003,125(20):6189-6199
The tris(3-tert-butyl-5-methylpyrazolyl)hydroborato zinc hydroxide complex [Tp(Bu)t(,Me)]ZnOH is protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Zn(OH(2))][HOB(C(6)F(5))(3)], which has been structurally characterized by X-ray diffraction, thereby demonstrating that protonation results in a lengthening of the Zn-O bond by ca. 0.1 A. The protonation is reversible, and treatment of [[Tp(Bu)t(,Me)]Zn(OH(2))](+) with Et(3)N regenerates [Tp(Bu)t(,Me)]ZnOH. Consistent with the notion that the catalytic hydration of CO(2) by carbonic anhydrase requires deprotonation of the coordinated water molecule, [[Tp(Bu)t(,Me)]Zn(OH(2))](+) is inert towards CO(2), whereas [Tp(Bu)t(,Me)]ZnOH is in rapid equilibrium with the bicarbonate complex [Tp(Bu)t(,Me)]ZnOC(O)OH under comparable conditions. The cobalt hydroxide complex [Tp(Bu)t(,Me)]CoOH is likewise protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Co(OH(2))][HOB(C(6)F(5))(3)], which is isostructural with the zinc complex. The aqua complexes [[Tp(Bu)t(,Me)]M(OH(2))][HOB(C(6)F(5))(3)] (M = Zn, Co) exhibit a hydrogen bonding interaction between the metal aqua and boron hydroxide moieties. This hydrogen bonding interaction may be viewed as analogous to that between the aqua ligand and Thr-199 at the active site of carbonic anhydrase. In addition to the structural similarities between the zinc and cobalt complexes, [Tp(Bu)t(,Me)ZnOH] and [Tp(Bu)()t(,Me)]CoOH, and between [[Tp(Bu)t(,Me)]Zn(OH(2))](+) and [[Tp(Bu)t(,Me)]Co(OH(2))](+), DFT (B3LYP) calculations demonstrate that the pK(a) value of [[Tp]Zn(OH(2))](+) is similar to that of [[Tp]Co(OH(2))](+). These similarities are in accord with the observation that Co(II) is a successful substitute for Zn(II) in carbonic anhydrase. The cobalt hydroxide [Tp(Bu)()t(,Me)]CoOH reacts with CO(2) to give the bridging carbonate complex [[Tp(Bu)t(,Me)]Co](2)(mu-eta(1),eta(2)-CO(3)). The coordination mode of the carbonate ligand in this complex, which is bidentate to one cobalt center and unidentate to the other, is in contrast to that in the zinc counterpart [[Tp(Bu)t(,Me)]Zn](2)(mu-eta(1),eta(1)-CO(3)), which bridges in a unidentate manner to both zinc centers. This difference in coordination modes concurs with the suggestion that a possible reason for the lower activity of Co(II)-carbonic anhydrase is associated with enhanced bidentate coordination of bicarbonate inhibiting its displacement. 相似文献
14.
The structurally characterized Tp(Me2)-supported rare earth metal monoalkyl complex (Tp(Me2))CpYCH(2)Ph(THF) (1) was synthesized via the salt-metathesis reaction of (Tp(Me2))CpYCl(THF) with KCH(2)Ph in THF at room temperature. Treatment of 1 with 1 equiv of PhC≡CH under the same conditions afforded the corresponding alkynyl complex (Tp(Me2))CpYC≡CPh(THF) (2). Complex 1 exhibits high activity toward carbodiimides, isocyanate, isothiocyanate, and CS(2); treatment of 1 with such substrates led to the formation of a series of the corresponding Y-C(benzyl) σ-bond insertion products (Tp(Me2))CpY[(RN)(2)CCH(2)Ph] (R = (i)Pr(3a), Cy(3b), 2,6-(i)Pr-C(6)H(3)(3c)), (Tp(Me2))CpY[SC(CH(2)Ph)NPh] (4), (Tp(Me2))CpY[OC(CH(2)Ph)NPh] (5), and (Tp(Me2))CpY(S(2)CCH(2)Ph) (6) in 40-70% isolated yields. Carbodiimides and isothiocyanate can also insert into the Y-C(alkynyl) σ bond of 2 to yield complexes (Tp(Me2))CpY[(RN)(2)CC≡CPh] (R = (i)Pr(7a), Cy(7b)) and (Tp(Me2))CpY[SC(C≡CPh)NPh] (9). Further investigation results indicated that 1 can effectively catalyze the cross-coupling reactions of phenylacetylene with carbodiimides. However, treatment of o-allylaniline with a catalytic amount of 1 gave only the benzyl abstraction product (Tp(Me2))CpY(NHC(6)H(4)CH(2)CH═CH(2)-o)(THF) (10), without observation of the expected organic hydroamination/cyclization product. All of these new complexes were characterized by elemental analysis and spectroscopic properties, and their solid-state structures were also confirmed by single-crystal X-ray diffraction analysis. 相似文献
15.
Hanping He Dr. Masaki Hagihara Dr. Kazuhiko Nakatani Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(40):10641-10648
A newly designed ligand, methylcarbamoylnaphthyridine dimer (MCND), was synthesized and characterized. Ligand binding to d(GAA)10 was investigated by UV thermal denaturation, circular dichroism spectroscopy, surface plasmon resonance, and cold‐spray‐ionization time‐of‐flight mass spectrometry. The results indicated that MCND bound to the d(GAA)n repeat to form a stable hairpin structure with a major binding stoichiometry of 3:1. The most likely binding site was identified as the G? G mismatch in the AGA/AGA triad. The polymerase stop assay showed that MCND binding to the d(GAA)n repeat effectively interfered with the extension of the primer at the first two GAA sites on the template with both prokaryotic Taq DNA polymerase and human DNA polymerase α. 相似文献
16.
Grirrane A Resa I Rodriguez A Carmona E Alvarez E Gutierrez-Puebla E Monge A Galindo A del Río D Andersen RA 《Journal of the American Chemical Society》2007,129(3):693-703
While, in general, decamethylzincocene, Zn(C5Me5)2, and other zincocenes, Zn(C5Me4R)2 (R = H, But, SiMe3), react with dialkyl and diaryl derivatives, ZnR'2, to give the half-sandwich compounds (eta5-C5Me4R)ZnR', under certain conditions the reactions of Zn(C5Me5)2 with ZnEt2 or ZnPh2 produce unexpectedly the dizincocene Zn2(eta5-C5Me5)2 (1) in low yields, most likely as a result of the coupling of two (eta5-C5Me5)Zn* radicals. An improved, large scale (ca. 2 g) synthesis of 1 has been achieved by reduction of equimolar mixtures of Zn(C5Me5)2 and ZnCl2 with KH in tetrahydrofuran. The analogous reduction of Zn(C5Me4R)2 (R = H, SiMe3, But) yields only decomposition products, but the isotopically labeled dimetallocene 68Zn2(eta5-C5Me5)2 and the related compound Zn2(eta5-C5Me4Et)2 (2) have been obtained by this procedure. Compound 2 has lower thermal stability than 1, but it has been unequivocally characterized by low-temperature X-ray diffraction studies. As for 1 a combination of structural characterization techniques has provided unambiguous evidence for its formulation as the Zn-Zn bonded dimer Zn2(eta5-C5Me4Et)2, with a short Zn-Zn bond of 2.295(3) A indicative of a strong Zn-Zn bonding interaction. The electronic structure and the bonding properties of 1 and those of related dizincocenes Zn2(eta5-Cp')2 have been studied by DFT methods (B3LYP level), with computed bond distances and angles for dizincocene 1 very similar to the experimental values. The Zn-Zn bond is strong (ca. 62 kcal.mol-1 for 1) and resides in the HOMO-4, that has a contribution of Zn orbitals close to 60%, consisting mostly of the Zn 4s orbitals (more than 96%). 相似文献
17.
18.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods. 相似文献
19.
High enantiomeric excesses are obtained in the addition of Me2Zn catalyzed by commercially available ClCr(Salen). Broad scope, simple procedure, room temperature, low catalyst loading are the characteristics of this new enantioselective process, which uses the rather unreactive Me2Zn. Enantiomeric excesses in the range of 71-99% are obtained with all the aldehydes tested. 相似文献
20.
水凝胶是指一种网络结构中含大量水,而不溶于水的高分子材料。近年来,发现聚乙烯醇(PVA)水溶液在低温冷冻一段时间,可形成强度较高的水凝胶弹性体,用这种水凝胶制得的固定化增殖细胞凝胶,在生物工程材料开发中取得了很好的效果。本文旨在研究低分子物质在PVA水凝胶中的扩散性能。 相似文献