首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The results of an experimental investigation of the flow over an annular cavity in a cylindrical body are presented; the cavity-to-body diameter ratio was 0.7 and the incident flow Mach number was 2.84. Using the data on the pressure distribution and optical measurements of the flow pattern, the structure of the flow inside the cavity was studied on the relative cavity length range from 0.5 to 14 including the regimes with both open and closed separation zones.  相似文献   

2.
The results of an experimental investigation of supersonic Mach 2.5 flow past an axisymmetric cylindrical model body with a rectangular annular cut-out on its lateral surface are presented. The evolution of the structure of the flow over the cavity with continuous variation in the angle of attack is studied on the basis of the data of flow visualization and balance measurements on the range of the relative cavity lengths L/h from 8 to 16. Hysteresis phenomena are revealed and analyzed.  相似文献   

3.
空腔流动存在剪切层运动、涡脱落与破裂,以及激波与激波、激波与剪切层、激波与膨胀波和激波/涡/剪切层相互干扰等现象,流动非常复杂,特别是高马赫数(M>2)时,剪切层和激波更强,激波与激波干扰更严重,对数值格式的要求更高,既需要格式耗散小,对分离涡等有很高的模拟精度,又需要格式在激波附近具有较大的耗散,可以很好地捕捉激波,防止非物理解的出现。Roe和HLLC等近似Riemann解格式在高马赫数强激波处可能会出现红玉现象,而HLLE++格式大大改善了这种缺陷,在捕捉高超声速激波时避免了红玉现象的发生,同时还保持在光滑区域的低数值耗散特性。本文在结构网格下HLLE++格式的基础上,通过改进激波探测的求解,建立了基于非结构混合网格的HLLE++计算方法,通过无粘斜坡算例,验证了HLLE++格式模拟高马赫数流动的能力,并应用于高马赫数空腔流动的数值模拟,开展了网格和湍流模型影响研究,验证了方法模拟高马赫数空腔流动的可靠性和有效性。  相似文献   

4.
An experimental and computational investigation has been performed to investigate flow characteristics and flow-field structures for three types of rectangular cavities. The data presented herein was obtained with cavity length to depth ratio of 6, 10 and 15 at 0° of attack, yawing and rolling angles of 0° over free-stream Mach numbers of 0.6, 0.8, 1.2 and 1.5 at Reynolds numbers of 1.23 ×107, 1.55 ×107, 2.01 ×107 and 2.26 ×107 per meter. The results indicate that the shear-layer expands over the cavity leading edge and impinges on the cavity floor for closed cavity flow, whereas it bridges the open cavity. The static pressure distributions are relatively uniform with the exception of a small adverse gradient occurring ahead of the rear face inside open cavity. Cavity length to depth ratio is a key geometrical parameter to define cavity flow types and influent pressure distributions inside cavities, and its decrease induces a decrease in pressure gradient. Increase in free-stream Mach numbers results in the trend that cavity flow types transform from closed to transitional cavity flow and from transitional to open cavity flow.  相似文献   

5.
The dependences of the drag force on the time and the Mach number are found, as also are pressure distribution, and the shape of the free surface. It is shown that with the passage of time the drag force rapidly approaches its asymptotic value, which corresponds to flow around a body by a compressible fluid in accordance with Kirchhoff's scheme. It is also shown that with increasing Mach number the dimensions of the cavity decrease, the unsteady cavity always being narrower than the Kirchhoff cavity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 104–107, March–April, 1985.  相似文献   

6.
Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition.  相似文献   

7.
The accuracy of MUSCL upwind and Yee-Roe-Davis symmetric TVD schemes for simulating low Mach number flow is studied through a numerical experiment of the 2-D lid driven cavity problem. The steady slate solution is reached by using a marching approach based on the pseudocompressibilty method in conjunction with implicit approximate factorization. A finite volume discretization of the conservation equations is used with a four level multigrid method to accelerate the convergence. The tests performed which were in the range of 100 ≤ Re ≤ 5000, show that the Yee-Roe-Davis symmetric scheme generates results in very good agreement with the benchmark results over this range of Re. The MUSCL upwind scheme accuracy deteriorates with the increasing Re.  相似文献   

8.
Fully turbulent inflow past a shallow cavity is investigated for the configuration of an axisymmetric cavity mounted in a pipe. Emphasis is on conditions giving rise to coherent oscillations, which can lead to locked-on states of flow tones in the pipe–cavity system. Unsteady surface pressure measurements are interpreted using three-dimensional representations of amplitude–frequency, and velocity; these representations are constructed for a range of cavity depth. Assessment of these data involves a variety of approaches. Evaluation of pressure gradients on plan views of the three-dimensional representations allows extraction of the frequencies of the instability (Strouhal) modes of the cavity oscillation. These frequency components are correlated with traditional models originally formulated for cavities in a free-stream. In addition, they are normalized using two length scales: inflow boundary-layer thickness and pipe diameter. These scales are consistent with those employed for the hydrodynamic instability of the separated shear layer, and are linked to the large-scale mode of the shear layer oscillation, which occurs at relatively long cavity length. In fact, a simple scaling based on pipe diameter can correlate the frequencies of the dominant peaks over a range of cavity depth.The foregoing considerations provide evidence that pronounced flow tones can be generated from a fully turbulent inflow at very low Mach number, including the limiting case of fully developed turbulent flow in a pipe. These tones can arise even for the extreme case of a cavity having a length over an order of magnitude longer than its depth. Suppression of tones is generally achieved if the cavity is sufficiently shallow.  相似文献   

9.
In order to examine the transition between regular and Mach reflection in a three-dimensional flow, a range of special geometry test pieces, and inlets, were designed. The concept is to have a geometry consisting of two plane wedges which results in regular reflection between the incident waves off the top and bottom of the inlet capped by two curved end sections causing Mach reflection. The merging of these two reflection patterns and the resulting downstream flow are studied using laser vapor screen and shadowgraph imaging supported by numerical simulation. An angled Mach disc is formed which merges with the line of regular reflection. A complex wave pattern results with the generation of a bridging shock connecting the reflected wave from the Mach reflection with the reflected waves from the regular reflection. In order to experimentally access the flow within the duct, a number of tests were conducted with one end cap removed. This resulted in a modified flow due to the expansive flow at the open end the influence of which was also studied in more detail.  相似文献   

10.
The self-excitation mechanism of the acoustic diametral modes of an axisymmetric internal cavity–duct system is studied for a Mach number range up to 0.4. The effect of cavity dimensions on the excitation mechanism is investigated experimentally and numerically. Experiments are conducted on three cavity depths and six cavity lengths for each depth. Numerical simulations of the mode shapes are also performed to determine the effect of cavity dimensions on the particle velocity field of the diametral modes. For all the tested configurations, the diametral modes are strongly excited at relatively low Mach numbers (as low as 0.1). The pulsation amplitude at resonance is found to increase as the cavity becomes shorter or deeper, relative to the main pipe diameter. The test results provide new insights into the excitation mechanism of diametral modes, the effect of the cavity length to depth ratio on the Strouhal numbers of acoustic resonances caused by various shear-layer modes of the cavity, and into the effect of the particle velocity field of the acoustic modes on the mode selectivity mechanism which determines the dominant acoustic mode during resonance.  相似文献   

11.
The characteristics of the flow and heat transfer in two- and three-dimensional open cavities on plane and cylindrical surfaces in a supersonic stream in the presence of a turbulent boundary layer have been investigated experimentally. The effects of the Mach number, boundary layer thickness, the shape of the cavity, and its angle of inclination to the free-stream direction on the flow parameters in the mixing layer above the cavity and the heat flux and pressure distribution on the surface of the cavity and its bottom are descirbed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 74–80, July–August, 1998.  相似文献   

12.
A direct numerical simulation is presented for the unsteady flow over a two-dimensional cavity at a Mach number of 0.5. The incoming flow is a laminar, subsonic boundary layer. Two values of the principal parameter L/δθ , where L is the cavity length and δθ the momentum thickness of the boundary layer, have been studied. The feedback mechanisms which induce self-sustained oscillations in the cavity have been well captured and two flow regimes were pointed out. The corresponding acoustic responses are specified in terms of the wall pressure in the cavity and the radiated acoustic field.  相似文献   

13.
射流对空腔噪声抑制效果研究   总被引:3,自引:0,他引:3  
高速空腔流动的流场结构非常复杂,在一定条件下存在严重的压力、速度等脉动,诱发强烈的噪声,声压级可达到170dB,对腔内的导弹及其自身结构安全构成很大的威胁。应用基于两方程剪切应力(SST)的尺度自适应(SAS)分离流模型的CFD技术和气动声学频域理论(FW-H积分方程),模拟了射流对二维M219空腔(长深比L/D=5)内气动噪声变化情况,研究了空腔流动特性、流场结构及发声机理。在此基础上,首先对比分析了不同射流位置对空腔噪声的抑制情况,以此确定一个工程上可实现的射流位置;然后,对比分析了不同射流状态(不同的射流流量、温度)对空腔噪声的抑制情况。由此可知,跨音速(Ma=0.85)条件下,采用不同的射流状态对空腔噪声具有不同的抑制效果,其中随着射流量及射流温度的增大,噪声抑制效果更加明显。  相似文献   

14.
A. D. Vasin 《Fluid Dynamics》1989,24(1):153-155
Slender axisymmetric cavities in a subsonic flow of compressible fluid were investigated in [1–4]. In [5] a finite-difference method was used to calculate the drag coefficient of a circular cone, near which the shape of the cavity was determined for subsonic, transonic, and supersonic water flows; however, in the supersonic case the entire shape of the cavity was not determined. Here, on the basis of slender body theory an integrodifferential equation is obtained for the profile of the cavity in a supersonic flow. The dependence of the cavity elongation on the cavitation number and the Mach number is determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 179–181, January–February, 1989.  相似文献   

15.
Experiments are performed to study the characteristics of rectangular cavity flows. Mean and fluctuating surface pressures in a Mach 1.28 turbulent flow past rectangular cavities are obtained. The cavity length-to-depth ratio (L/D) is varied from 2.43 to 43.00, while the length-to-width ratio (L/W) is 0.5, 1.0 and 2.0. The three-dimensional effect is significant on the trailing edge vortex, which affects the peak pressure ahead of the rear face, pressure gradient and levels of pressure fluctuation near the trailing edge, particularly for closed and transitional cavity flows. L/W and Mach number are important for the definition of critical L/D for the cavity flowfield models. Received: 12 March 1999/Accepted: 30 August 2000  相似文献   

16.
Characteristics of Oscillations in Supersonic Open Cavity Flows   总被引:1,自引:0,他引:1  
Characteristics of oscillations in supersonic open cavity flows are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large Eddy Simulation) method. The oscillation regimes and feedback mechanisms for the supersonic cavity flows are identified and analyzed. The calculation captures a mixed shear-layer/wake oscillation mode in the flow of Ma = 1.75, where these two modes occur alternately. The shear-layer mode and wake mode are driven by vortex convection-acoustic feedback and absolute instability, respectively. In particular, the results indicate that the feedback-acoustic-wave in the shear-layer mode is probably generated by the reflection of the downstream-traveling pressure wave, associated with the shed vortex in the shear layer, on the aft wall. The cavity flow of Ma = 2.52 is then simulated to see the influence of Mach number. It is found that the increase of Mach number may decrease the amplitude of the fluctuations in the shear layer, inhibiting the transition to wake mode. Furthermore, the influence of upstream injection is also studied, where the results show that the injection only weakens the oscillations and faintly shifts the resonant frequencies.  相似文献   

17.
Whitham's approximation for handling shock wave propagation in area changes (reductions) in a duct was checked in comparison with a numerical solution. Also the Whitham approximation for shock wave propagation from a constant cross-sectional duct to a duct of a smaller cross-sectional area was studied and compared with a numerical solution. It was found that for modest incident shock Mach numbers and modest area reductions the Whitham approximation provided a fair solution for the shock Mach number and for the post-shock pressure. For higher shock Mach numbers and/or area reductions, large discrepancies exit between the approximate and exact solutions. A wider range of applicability of the Whitham approximation is found for the monotonical area reduction case; it is quite narrow for the passage of a shock wave from a wider to a narrower duct case. In addition, the effect of the extent of the area change region on the time required for reaching a quasi-steady flow was studied. It was shown that the longer the area change segment is, the longer it takes to reach a quasi-steady flow.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

18.
Supersonic flow over an open cavity can create intense pressure loads on the surfaces within the cavity. In order to combat these loads, the development of a control scheme to reduce them is becoming increasingly important for many engineering applications. The present study implements steady leading edge blowing through various configurations of spanwise-aligned rectangular leading edge slots. The effects of this control on the flow field were examined to determine the suppression mechanisms exploited by the leading edge blowing. The cavity studied here had a length-to-depth ratio of 6 and was placed in a freestream flow with a Mach number of 1.4. Actuators with one continuous slot and three and five segmented slots spanning the width of the cavity were installed at the leading edge. Surface pressure reductions of nearly 45% were achieved on the aft wall of the cavity using the 5-slot configuration. Velocity field measurements acquired through 2-component (streamwise-aligned measurement plane) and 3-component stereoscopic (cross-stream-aligned measurement plane) particle image velocimetry revealed the presence of streamwise-aligned vortices created by the segmented slots. These act to significantly alter the shear layer formed at the mouth of the cavity creating highly three-dimensional flow field features.  相似文献   

19.
Effects of wall mounted cavity on a Mach 1.7 freestream flow over it are investigated experimentally and numerically. Three different three dimensional (3D) cavity configurations have been used in the study. The results are compared with those of a two dimensional (2D) cavity. Flow field over the cavity is observed to depend intensely on the cavity width and on the allied aerodynamic flow structure in the vicinity of the cavity. Pressure oscillations generated by presence of wall mounted cavity in supersonic freestream was also observed to affect the fluid motion over cavities.  相似文献   

20.
在低飞行马赫数条件下,乙烯燃料超燃冲压发动机为实现成功点火及稳定燃烧,常使用先锋氢引燃乙烯,本文通过试验研究了多种喷注方案下的超燃燃烧室流动特性、火焰传播特性及燃烧稳定性,喷注方案包括单先锋氢、单乙烯和组合喷注方式.超燃燃烧室入口马赫数为2.0,总温为953 K,总压为0.82 MPa.多种非接触光学测量手段被应用于超...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号