首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present numerical efficient methods for the computation ofthermodynamic and transport properties of nonequilibrium thermalplasmas. Thermodynamic properties of mono- and diatomic speciesare calculated directly from partition functions. The evaluation oftransport properties is based on the kinetic theory using the classicalChapman–Enskog approach to solve the heavy particle Boltzmannequation. A multitemperature model is used to consider thermalnonequilibrium.  相似文献   

2.
A study was carried out of the heating of powders in an r.f. inductively coupled plasma under dense loading conditions. The results obtained using a mathematical model taking into account plasma-particle interaction effects reveal an important cooling of the plasma caused by the presence of the particles. This, in turn, gave rise to a corresponding drop of the efficiency of the melting of the particles in the plasma. The effect is shown to depend strongly on the thermodynamic properties of the material of the powder.  相似文献   

3.
Plasma diagnostic techniques have been employed to determine particle densities and temperatures in a low-pressure argon plasma jet generated by a cascade arc. These measurements allow characterization of the extent to which the plasma jet deviates from thermodynamic equilibrium and provide a basis for predicting how reactive gases will interact with the excited and ionized species in the plasma jet. It was found that the distribution of atomic states in the plasma jet is not adequately described by either local thermodynamic equilibrium (LTE) or partial local thermodynamic equilibrium (pLTE), and the jet was optically thick for 3p4s transitions across the jet radius. Excited argon neutrals outnumber ions by a large ratio, and dominate subsequent dissociation/excitation phenomena. The rate of methane destruction in the plasma jet shows that estimates for particle densities, temperature, and jet velocity are self-consistent.  相似文献   

4.
This paper presents a modeling attempt related to low-pressure plasma spraying processes which find increasing applications for materials processing. After a review of the various models for ionization and recombination processes, a two-temperature model for argon plasmas in chemical (ionization) nonequilibrium is established using finite rate chemistry. Results of sample calculations manifest departures from kinetic as well as chemical equilibrium, demonstrating that the conventional models based on the LTE (local thermodynamic equilibrium) assumption cannot provide proper prediction for low-pressure plasma jets.  相似文献   

5.
戴超  季聪  顾璠 《化学通报》2017,80(6):568-572
本文研究了CO2为气化介质时,等离子体辅助煤气化过程中焦油组分苯发生的非热转化特性,建立了焦油组分苯、CO2单电极尖端放电非平衡态等离子体反应体系。通过煤气分析仪对转化反应的产物进行分析,并采用可见发射光谱技术对等离子体进行诊断。结果表明,在该反应体系中,苯转化生成的气态产物是CO与CO2的混合气,而H元素直接被氧化生成H20。能量密度对于苯转化反应起主导作用。在相同能量密度条件下,降低苯浓度也能够提高苯的转化率,但改变气速增加反应时间并不能提高苯的转化率。此外,通过光谱分析可得苯的非热转化可由CO2直接解离产生的O自由基触发。  相似文献   

6.
Computational fluid dynamics modeling of multicomponent thermal plasmas   总被引:1,自引:0,他引:1  
A comprehensive computational model has been developed Jbr flowing thermal plasmas in the absence of electromagnetic fields, with particular emphasis on plasma jets. The plasma is represented as a rnulticomponent chemicalh, reacting ideal gas with temperature-dependent thermodynamic and transport properties. The plasma flow is governed by the transient compressible Navier-Stokes equations in two or three space dimensions. Turbulence is represented by subgrid-scale and k- models. Species diffusion is calculated by an effective binary diffusion approximation, generalized to allow /or ambipolar diffusion of charged species. Ionization, dissociation, recombination, and other chemical reactions are computed by general kinetic and equilibrium chemistry algorithms. Radiation heat loss is currently modeled as a temperature-dependent energy sink. Finite-difference approximations to the governing equations are solved on a rectangular spatial mesh using explicit temporal differencing. Computational inefficiency at low Mach number is avoided br reducing the effective sound speed. The overall computational model is embodied in a new computer code called LAVA. Computational results and comparisons with experimental data are presented Jbr LAVA simulations of a steady-stare axisymmetric argon plasma jet flowing into cold argon.  相似文献   

7.
A numerical analysis of the influence of different nozzle configurations on the plasma flow characteristics inside D.C plasma torches is presented to provide an advanced nozzle design basis for plasma spraying torches. The assumption of steady-state, axis-symmetric, local thermodynamic equilibrium, and optically thin plasma is adopted in a two-dimensional modeling of plasma flow inside the plasma torch. The PHOENICS software is used for solving the governing equations, i.e. the conservation equations of mass, momentum, and energy along with the equations describing the K-epsilon model of turbulence. The calculated arc voltages are consistent with the experimental results when arc current, gas inflow rate, and working gas are the same as the experimental parameters. Temperature, axial velocity contours inside plasma torches, profiles along the torch axis and profiles at the outlet section are presented to show the plasma flow characteristics. Comparisons are made among those torches. The results show that torches with different anode nozzle configurations produce different characteristics of plasma flows, which suggest some important ideas for the advanced nozzle design for plasma spraying. In order to validate the model and to show its level of predictivity, a comparison of the model with experimental results encountered in the literature is presented in the last part.  相似文献   

8.
Reduction of Metallurgical Wastes in an RF Thermal Plasma Reactor   总被引:1,自引:0,他引:1  
Recovery of metals from iron and zinc oxides, as well as from zinc-containing metallurgical wastes, such as flue dust from the Siemens–Martin process and sludge from hot galvanizing, has been studied in an rf thermal plasma reactor under reducing conditions. The product composition was estimated by thermodynamic calculations based on the minimization of the Gibbs free enthalpy. Effects of the plate power of rf generator and the feed rate of powder on the chemical and phase composition of products have been investigated in detail. It has been proved that the rf thermal plasma treatment makes possible to produce unstable species in thermodynamic terms: metallic zinc was gained in the reaction of ZnO and hydrogen. The gradient cooling along the plasma reactor led to the segregation of the iron and zinc compounds. Valuable products were made from the particular wastes by a single step thermal plasma processing.  相似文献   

9.
In this paper, a more realistic approach of a non-uniform optically thick plasma in local thermodynamic equilibrium was applied to describe self-reversal of Co I 340.51 nm emission line recorded from a laser-induced plasma generated on a Co–Cr–Mo metallic alloy. This line was selected because it is one of the most absorbed of the major elements in air at atmospheric pressure.The model describes the behavior of the plasma after the breakdown, and it was semiempirical thus, some information was taken from the experiment. A cylinder-symmetrical plasma column with a parabolic temperature distribution having a maximum at the center and decreasing toward the edges was considered. The input parameters were the plasma length, the temperature in the plasma core, and the Co total density, which were estimated from measurements and previous work. Moreover, the distribution of electron density depended on the temperature, and the ionization degree was taken into account through Saha equation. Then, plasma parameters were adjusted in such a way calculations reproduced the experimentally measured line profiles.The effect of varying laser power on plasma homogeneity and its evolution in time were investigated. Moreover, preliminary results of spatial distribution of plasma parameters were obtained that confirmed the practical application of the model on plasma diagnostics.  相似文献   

10.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   

11.
《Comptes Rendus Chimie》2016,19(4):433-440
In this study, an experimental plasma-chemical reactor equipped with an arc discharge water steam plasma torch was used for biomass conversion to hydrogen-rich synthesis fuels. Glycerol and crushed wood were used as biomass sources. The effects of different conversion parameters including the water steam flow rate, treated material flow rate, and plasma torch power were studied. The experimentally obtained results were compared with the model based on the thermodynamic equilibrium. Additionally, the quantification of the plasma conversion system in terms of energy efficiency and specific energy requirement was performed. It has been found that the synthesis gas can be effectively produced from the biomass using water steam plasma.  相似文献   

12.
To take into account the nonequilibrium between the temperatures (electronic, rotation, vibration, translation) in plasmas, the partition function are modified. Then they are used to determine the concentration in a Gibbs free energy minimization method adopted to a multi-temperature plasma. Their influence oil the results for different temperature hypotheses is quantified. The composition and thermodynamic properties of an Ar-H2 mixture are given and discussed for different temperature nonequilibria.  相似文献   

13.
Plasma sintering experiments in this laboratory at reduced pressures revealed efficient heating of the ceramic sample due to recombination of dissociated and/or ionized species on the surface. For establishing a model for this plasma sintering process, it is necessary to first consider the plasma itself. Therefore, a suitable model for an RF inductively coupled plasma has been developed considering reduced pressures. As the pressure decreases, the electron density also decreases at a fixed electron temperature, causing substantial deviations from chemical equilibrium. Due to the poor collisional coupling between electrons and heavy particles at reduced pressures, large deviations from kinetic equilibrium have also to be expected. The model is based on a rotationally symmetric plasma contained in a quartz tube. The power level ranges from 1.5 to 3 kW and the operating pressure is varied from 1 to 0.01 atm. Both deviations from chemical and kinetic equilibrium are included in this model. Thermodynamic and transport properties for two-temperature plasmas are used for this modeling work. The results indicate that for pressures below 0.1 atm, there is a strong ambipolar flux of charge carriers to the confining walls, leading to significant variations of the temperature across the tube. The electron temperature increases rapidly as the pressure decreases, whereas the heavy-particle temperature decreases.  相似文献   

14.
Decomposition of carbon tetrachloride in a RF thermal plasma reactor was investigated in argon atmosphere. The net conversion of CCl4 and the main products of its decomposition were determined from the mass spectrometric analysis of outlet gases. Flow and temperature profiles in the reactor were calculated and concentration profiles of the species along the axis of the reactor were estimated using a newly developed chemical kinetic mechanism, containing 12 species and 34 reaction steps. The simulations indicated that all carbon tetrachloride decomposed within a few microseconds. However, CCl4 was partly recombined from its decomposition products. The calculations predicted 70\% net conversion of CCl4, which was close to the experimentally determined value of 60\%. A thermodynamic equilibrium model also simulated the decomposition. Results of the kinetic and thermodynamic simulations agreed well above 2000 K. However, below 2000 K the thermodynamic equilibrium model gave wrong predictions. Therefore, application of detailed kinetic mechanisms is recommended for modeling CCl4 decomposition under thermal plasma conditions.  相似文献   

15.
The influence of added Li on the ICP characteristics is investigated by computer simulation. The transport and the thermodynamic parameters of Li in the temperature interval between 300 and 13,000 K are taken from the literature, while in the case of absence of those, the data were estimated. The HiFI computer program was used for calculation of spatial distributions of temperature, velocity, and electromagnetic fields for argon plasma with the presence of different quantities of Li up to 30%. On the basis of calculated temperature field and equilibrium plasma composition the spatial distribution of electron density was determined. It was found that the addition of Li considerably influences the spatial distributions of all analyzed plasma parameters at Li concentrations higher than 1%. It is shown that the electron density is the most sensible among all analyzed parameters of the presence of Li.  相似文献   

16.
The paper reports on the construction and operating characteristics of a planar dielectric barrier discharge (DBD) plasma generator. The generator was powered from a commercial frequency inverter at 400 Hz through a high voltage transformer. It could be operated up to a specific energy density (power per gas flow) of 20 Wh/m3. The corresponding power density was about 0.5 W per cubic centimeter of discharge volume. Special emphasis was given to a simple and reliable construction, which was easy to assemble and is based on a new, nonexpensive barrier material with excellent electrical, mechanical, and thermal properties. The modular reactor design allows simple plasma power scale-up. The reactor works with undried ambient air without additional cooling. In the range up to 10 Wh/m3 the ozone generation from ambient air was directly proportional to the energy density at a rate of 60 g O3 per kWh or 30 ppm/Wh/m3. Thus the generator can serve as an effective source for chemically active radicals in plasma gas cleaning applications.  相似文献   

17.
Transferred-arc plasma treatment of iron sulfides containing gold is examined from both thermodynamic and experimental points of view. Three cases are analyzed: argon plasma with sulfide, argon plasma with a carbon–sulfide mixture, and argon–methane plasma with sulfide. The carboreduction of the materials appears to be well adapted for gold separation by fuming, but experimentally the process is limited by the poor mixing of graphite with molten material. The reduction with a CH4 (10%) plasma is a proved alternative to the aforementioned process. A gold extraction efficiency of 90% is achieved for batch smelting operations.  相似文献   

18.
Bacterial infections of medical devices present severe problems connected with long-term antibiotic treatment, implant failure, and high hospital costs. Therefore, there are enormous demands for innovative techniques which would improve the surface properties of implantable materials. Plasma technologies present one of the compelling ways to improve metal’s antibacterial activity; plasma treatment can significantly alter metal surfaces’ physicochemical properties, such as surface chemistry, roughness, wettability, surface charge, and crystallinity, which all play an important role in the biological response of medical materials. Herein, the most common plasma treatment techniques like plasma spraying, plasma immersion ion implantation, plasma vapor deposition, and plasma electrolytic oxidation as well as novel approaches based on gaseous plasma treatment of surfaces are gathered and presented. The latest results of different surface modification approaches and their influence on metals’ antibacterial surface properties are presented and critically discussed. The mechanisms involved in bactericidal effects of plasma-treated surfaces are discussed and novel results of surface modification of metal materials by highly reactive oxygen plasma are presented.  相似文献   

19.
The behavior of plasma flow, generated by a D.C. plasma spraying gun, is simulated in a time-dependent 3 D. design. The high-temperature and high-velocity plasma plume is generated by a simple model based on Joule effect. The criterion of validation is the thermal efficiency while the only adjustment parameter is the length of the plasma column inside the anode. The transient plasma flow issuing in air atmosphere is reproduced. The plasma behavior is quite similar to that observed by fast-image video. Moreover, the centerline plasma plume properties are in agreement with experiment measurements, especially close to the torch exit and downstream the laminar-to-turbulent transition.  相似文献   

20.
The effect of pressure during thermal plasma chemical vapor deposition of diamond films has been investigated for a pressure range from 100 to 760 Torr. The maximum growth rate in our experiments occurs at 270 Torr for substrate temperatures around 1000°C. The existence of an optimum pressure for diamond deposition may he related to the balance between generation and recombination of atomic hydrogen and carbon-containing active species in front of the substrate. To estimate the concentrations of atomic hydrogen and methyl radicals under thermal plasma conditions, calculations based on thermodynamic equilibrium have been performed. This approximate evaluation provides useful guidelines because rapid diffusion results in a near frozen chemistry within the boundary layer. The effect of substrate pretreatment on diamond deposition depends on the type of substrate used. Two growth modes have been observed-layer growth and island growth of diamond crystals on various substrates. Screw dislocations have been observed in diamond deposition in thermal plasmas, and defects such as secondary nucleations are more concentrated along (III) directions than along (100) directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号