首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology) to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of beta-casein and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (etas) varies greatly with the surface pressure. In general, the greater the surface pressure, the greater the values of etas. At higher surface pressures, collapsed beta-casein residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography of monoglyceride and beta-casein domains, on one hand, and a segregation between domains of the film-forming components, on the other hand, were also observed. The displacement of the beta-casein by the monoglycerides is facilitated under shear conditions, especially for beta-casein-monoolein mixed films.  相似文献   

2.
The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at pipi(e)(CS) have important repercussions on the shear characteristics of the mixed films.  相似文献   

3.
In this work we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology), to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of milk protein (beta-casein, caseinate, and beta-lactoglobulin) and monoglyceride (monopalmitin and monoolein) mixed films spread and adsorbed on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (eta(s)) varies greatly with the surface pressure (pi). In general, the greater the pi values, the greater were the values of eta(s). Moreover, the eta(s) value is also sensitive to the miscibility and/or displacement of film-forming components at the interface. At surface pressures lower than that for protein collapse, protein and monoglyceride coexist at the air-water interface. At surface pressures higher than that for the protein collapse, a squeezing of collapsed protein domains by monoglycerides was deduced. Near to the collapse point, the mixed film is dominated by the presence of the monoglyceride. Different proteins and monoglycerides show different interfacial structure, topography, and shear viscosity values, confirming the importance of protein and monoglyceride structure in determining the interfacial characteristics (interactions) of mixed films. The values of eta(s) are lower for disordered (beta-casein or caseinate) than for globular (beta-lactoglobulin) proteins and for unsaturated (monoolein) than for saturated (monopalmitin) monoglycerides in the mixed film. The displacement of the protein by the monoglycerides is facilitated under shear conditions.  相似文献   

4.
In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.  相似文献   

5.
In this contribution we are concerned with the study of structure, topography, and surface rheological characteristics under shear conditions of monoglyceride (monopalmitin and monoolein) and milk protein (beta-casein, kappa-casein, caseinate, and WPI) spread monolayers at the air-water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy: BAM) techniques have been applied in this study to pure emulsifiers (proteins and monoglycerides) spread at the air-water interface. To study the shear characteristics of spread films, a homemade canal viscometer was used. The experiments have demonstrated the sensitivity of the surface shear viscosity (eta(s)) of protein and monoglyceride films at the air-water interface, as a function of surface pressure (or surface density). The surface shear viscosity was higher for proteins than for monoglycerides. In addition, eta(s) was higher for the globular WPI than for disordered beta-casein and caseinate due to the strong forces acting on spread globular proteins. This technique makes it possible to distinguish between beta-casein and caseinate spread films, with the higher eta(s) values for the later due to the presence of kappa-casein. The eta(s) value varies greatly with the surface pressure (or surface density). In general, the greater the surface pressure, the greater the values of eta(s). Finally, the eta(s) value is also sensitive to the monolayer structure, as was observed for monoglycerides with a rich structural polymorphism (i.e., monopalmitin).  相似文献   

6.
In this work we have analyzed the structural, topographical, and shear characteristics of mixed monolayers formed by adsorbed beta-lactoglobulin (beta-lg) and spread monoglyceride (monopalmitin or monoolein) on a previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm, Brewster angle microscopy (BAM), and surface shear characteristics were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The pi-A isotherm and BAM images deduced for adsorbed beta-lactoglobulin-monoglyceride mixed films at pi lower than the equilibrium surface pressure of beta-lactoglobulin (pi(e)(beta-lg)) indicate that beta-lactoglobulin and monoglyceride coexist at the interface. However, the interactions between protein and monoglyceride are somewhat weak. At higher surface pressures (at pi > or = pi(e)(beta-lg)) a protein displacement by the monoglyceride from the interface takes place. The surface shear viscosity (eta(s)) of mixed films is very sensitive to protein-monoglyceride interactions and displacement as a function of monolayer composition (protein/monoglyceride fraction) and surface pressure. Shear can induce change in the morphology of monoglyceride and beta-lactoglobulin domains, on the one hand, and segregation between domains of the film-forming components on the other hand. In addition, the displacement of beta-lactoglobulin by the monoglycerides is facilitated under shear conditions.  相似文献   

7.
The distribution of proteins and lipids in food emulsions and foams is determined by competitive and cooperative adsorption between the two types of emulsifiers at the fluid-fluid interfaces, and by the nature of protein-lipid interactions, both at the interface and in the bulk phase. The existence of protein-lipid interactions can have a pronounced impact on the surface rheological properties of these systems. Therefore, these results are of practical importance for food emulsion formulation, texture, and stability. In this study, the existence of protein-lipid interactions at the interface was determined by surface dynamic properties (interfacial tension and surface dilational modulus). Systematic experimental data on surface dynamic properties, as a function of time and at long-term adsorption, for protein (whey protein isolate (WPI)), lipids (monoglycerides), and protein-lipid mixed films at the oil-water interface were measured in an automated drop tensiometer. The dynamic behaviour of protein+lipid mixed films depends on the adsorption time, the lipid and the protein/lipid ratio in a rather complicated manner. The protein determined the interfacial characteristics of the mixed film as the protein at WPI>/=10(-2)% wt/wt saturated the film, no matter what the concentration of the lipid. However, there exists a competitive or cooperative adsorption of the emulsifier (WPI and monoglycerides), as the concentration of protein in the bulk phase is far lower than that for interfacial saturation.  相似文献   

8.
In this work we have analyzed the penetration of betalactoglobulin into a monoglyceride monolayer (monopalmitin or monoolein) spread at the air-water interface and its effects on the structural, dilatational, and topographical characteristics of mixed films. Dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology have been used, maintaining the temperature constant at 20 degrees C and the pH and ionic strength at 7 and 0.05 M, respectively. The initial surface pressure (mN/m) of the spread monoglyceride monolayer (pii(MONOGLYCERIDE)) at 10, 20, and the collapse point is the variable studied. Beta-lactoglobulin can penetrate into a spread monoglyceride monolayer at every surface pressure. The penetration of beta-lactoglobulin into the monoglyceride monolayer with a more condensed structure, at the collapse point of the monoglyceride, requires monoglyceride molecular loss by collapse and/or desorption. However, the structural, topographical, and dilatational characteristics of monoglyceride penetrated by beta-lactoglobulin mixed monolayers are essentially dominated by the presence of monoglyceride (either monopalmitin or monoolein) in the mixed film. In fact, monoglyceride molecules have the capacity to re-enter the monolayer after expansion and recompression of the mixed monolayer. Thus, monoglyceride molecular loss by collapse and/or desorption is reversible. The topography of the monolayer under dynamic conditions corroborates these conclusions.  相似文献   

9.
In this work, we have analyzed the dynamics of the penetration of beta-casein into monoglyceride monolayers (monopalmitin and monoolein) and the structural, dilatational, and topographical characteristics of mixed films formed by monoglyceride penetrated by beta-casein. Different complementary experimental techniques [dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology] have been used, maintaining the temperature constant at 20 degrees C and the pH at 7. The surface pressure of the monoglyceride monolayer at the beginning of the penetration process (at pi(i)MP and pi(i)MO for monopalmitin and monoolein, respectively) was the variable studied. beta-Casein can penetrate into a spread monoglyceride monolayer at every surface pressure. The penetration of beta-casein into the monoglyceride monolayer with a more condensed structure, at the collapse point of the monoglyceride, is a complex process that is facilitated by monoglyceride molecular loss by collapse and/or desorption. However, the structural, topographical, and dilatational characteristics of the monoglyceride penetrated by beta-casein mixed monolayers are essentially dominated by the presence of the monoglyceride (either monopalmitin or monoolein) in the mixed film.  相似文献   

10.
Two-dimensional protein crystallization on lipid monolayers at a quiescent air/water interface is now a well-established process, but it only operates under a very restricted set of conditions and on a very slow time scale. We have recently been able to significantly extend the conditions under which the proteins will crystallize as well as speed up the process by subjecting the interface to a shearing flow. Here, we investigate the two-way coupling between a protein-laden film and the bulk flow that provides the interfacial shear. This flow in a stationary open cylinder is driven by the constant rotation of the floor. Using the Boussinesq-Scriven surface model for a Newtonian interface coupled to the Navier-Stokes equations for the bulk flow, we find that the surface shear viscosity of protein-laden films under most conditions is small or negligible. This is the case for films subjected to constant shearing flow, regardless of the duration of the flow. However, when the film is intermittently sheared, significant surface shear viscosity is evident. In these cases, the surface shear viscosity is not uniform across the film.  相似文献   

11.
Linear stability analysis for a film on a solid surface with a viscoelastic air-liquid interface is presented. The interfacial dilatational and shear viscoelastic properties were described by Maxwell models. Dilatational and shear interfacial elasticity and viscosity were shown to improve film stability. When the interfacial rheological properties are extremely large or small, the maximum perturbation growth coefficient is shown to reduce to those for immobile and mobile interfaces respectively. Calculated values of maximum growth coefficient for thin film stabilized by 0.5% beta-lactoglobulin approached those of mobile films for thick (>2000 nm) and those for immobile films for thin (<100 nm) films respectively with the values lying between the two limits for intermediate film thicknesses.  相似文献   

12.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

13.
The hydrolysis of 1,2-diolein (DO) monomolecular films by Humicola lanuginosa lipase (HLL) was studied by simultaneous measuring the decrease in the film area and the changes in the surface potential in the “zero-order trough” at constant surface pressure and in the presence of β-cyclodextrin (β-CD). The decrease with time in the film area reflects both the reduction in the area per molecule due to the transformation of substrate DO molecules into the products molecules of monoolein (MO) and oleic acid (OA) and the desorption of the soluble inclusion complexes β-CD–MO and β-CD–OA. The surface potential data were interpreted as an accumulation at the interface of negatively charged products of OA and insoluble β-CD–DO complexes. In the proposed kinetic model, the product solubilization rates in the presence of β-CD and the flux supplied progressively by the moving barrier from the reservoir to the reaction compartment in order to keep the constant surface pressure were taken into account. The surface concentrations of MO and OA transiently present at the interface were determined. The values of the global kinetic constant Qm′ of hydrolysis of DO to MO were obtained. Comparison with the values of the global kinetic constant of hydrolysis of monoglyceride MO to OA shows that the rates of hydrolysis of diglyceride and monoglyceride by HLL are of the same order of magnitude.  相似文献   

14.
The surface behaviour of spread dipalmitoyl phosphatidyl choline (DPPC), lung surfactant protein C (SP-C), and their mixtures were characterised using a captive bubble surfactometer. The surface tension was determined by using axisymmetric bubble shape analysis. Surface dilatational rheological behaviour was characterised by sinusoidal oscillation of the bubble volume and at frequencies 0.006-0.025 Hz. The pi/A isotherms of DPPC, SP-C, and their mixtures were described with a generalised equation of state. Monolayer cycling of mixed DPPC/SP-C layers yields isotherms with a plateau in the range of 50-53 mN/m. When the surface pressure becomes higher SP-C is squeezed out of the film, but it re-enters the film upon expansion. Surface dilatational elasticities of DPPC films had a maximum at about 30 mN/m. At higher surface pressures, the films became brittle and the elasticity decreased. A slightly pronounced maximum was found at a surface pressure exceeding 55 mN/m. The dilatational viscosity had two distinct maxima, corresponding with those in the elasticity curves, i.e. one before the minimum area demand, and one in the range of over-compression. This was explained by the formation of a second ordered complex structure in the range of film over-compression. SP-C films show continuously increasing dilatational elasticities and viscosities with a maximum at f approximately 0.02 Hz. Mixed monolayers, DPPC+2 mol% SP-C, had dilatational elasticities increasing with surface pressure. In contrast to DPPC alone, an elasticity maximum appeared in the range of the squeeze out plateau. The dilatational viscosity had two distinct maxima as observed for DPPC, whereas the maximum before the squeeze out plateau is very broad like that of SP-C. The viscosity decreased for frequencies higher 0.02 Hz favouring elastic properties of the film. Our data provide experimental evidence that SP-C mixed with DPPC yield higher elasticities and viscosities as compared with films formed by the single components. This behaviour is likely to support breathing cycles, especially for the turn from inspiration to expiration and vice versa.  相似文献   

15.
Molecular interaction is very important for the mechanical properties and application of Langmuir films. In general, fatty acid film is stabilized by certain "subphase ions." In this work, two metal beta-diketonate complexes (M(tmhd)n, tmhd=2,2,6,6-tetramethyl-3,5-heptanedionate) were used as "surface ions" to form stable condensed films with different ratios at the air/water interface. The pi-A isotherms of the mixed films had been measured. The smaller molecular area of the metal beta-diketonate complexes indicated that the metal beta-diketonate complexes form multilayer condensed structures at high pressure at the air/water interface. However, arachidic acid (AA) retained a monolayer structure at high pressure in the mixed system. No considerable phase separations appeared during the compression of the mixed films, which indicated that the mixed films of metal beta-diketonate complexes and AA were miscible and stable. The molecular interaction of the two components in the mixed films was investigated in detail. Mixed systems with the mixing ratio of M(tmhd)n:AA=1:2 were chosen to study the effects of the interaction on the mechanical properties of the mixed films. The molecular interaction between AA and Ce(tmhd)4 is proved to be more significant than that between AA and Sr(tmhd)2, and the pi-A isotherms of the mixed films differ a lot from that of pure AA monolayer. Due to the strong intermolecular interaction, the liquid region disappears in the Ce(tmhd)4/AA mixed films, and dynamic elasticity is improved especially at high surface pressure. On the other hand, the interaction between the AA and the Sr(tmhd)2 is much weaker and the effects of the interaction on the properties (pi-A isotherm and dynamic elasticity) of the mixed films are not so significant, especially at low surface pressure. These results are in accordant with that of the UV spectra analyses.  相似文献   

16.
Binary mixed monomolecular films of poly(benzyl-methacrylate) and arachidic acid at the water/air interface have been studied with respect to compatibility and stability. The surface pressure — area isotherms indicate compatibility of the two components. However, the miscible state is unstable at high surface pressures. This is demonstrated by the constant pressure relaxation of the mixtures. There is a mechanism of separation and nucleation of the arachidic acid from the film for mixtures with high polymer content at a surface pressure of 30 mN/m. For lower concentrations of polymer in the mixtures and at a surface pressure of 20 mN/m the fatty acid is stabilized by the polymer.  相似文献   

17.
A model tear film lipid layer composed of a binary mixture of cholesteryl myristate (CM) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) was characterized using surface tension measurements, Brewster angle microscopy (BAM) and interfacial stress rheology (ISR). Isotherms showed that films containing >or=90 mol % CM have a 17-fold greater % area loss between the first and second compressions than the films with less CM. BAM images clearly showed that CM films did not expand after compression, and solid-like regions extending 1-2 mm were observed at low pressures (1 mN/m). Lipid films with or=50 mol % CM became elastic at higher surface pressures. Increasing CM content reduced the surface pressure at which the mixed film became elastic. Lysozyme adsorption into a CM film increased the compressibility and resulted in a more expanded film. Lysozyme increased the ductility of the CM/DPPC films with no film breakdown occurring up to the highest pressure measured (40 mN/m). In summary, CM increased the elasticity of the lipid films, but also caused them to become brittle and incapable of expansion following compression. Lysozyme adsorption increased the ductility and decreased the isotherm hysteresis for CM/DPPC films.  相似文献   

18.
Two-dimensional surface properties of PEO-PPO-PEO triblock copolymer film (Mol.Wt. 2800) in the absence and presence of Tyr-Phe dipeptide, Val-Tyr-Val tripeptide, sodium dodecylsulfate and stearic acid have been investigated for the first time at the air/water interface using Langmuir film balance technique. It is observed that the above polymer forms fairly stable film at the air/water interface. There are no significant changes observed in the surface pressure-area (π-A) isotherms of polymer in the presence of SDS. However, more expanded film was formed in presence of SDS since the solubility of the polymer is more in SDS and the polymer network is disturbed in presence of SDS, which results in the increase in surface area of the polymer films. In the presence of dipeptide and tripeptide, the surface area of the polymer film decreased with a slight increase in the surface pressure indicating the binding of these peptides to polymer, which enhances the stability of the polymer film. Thermodynamic studies on the change in surface area (ΔA) and excess free energy of mixing (ΔG(mix)(E)) associated with the formation of the mixed film suggest the occurrence of a thermodynamically unstable mixed film. The presence of SDS slightly decreases the formation of mixed film of stearic acid with triblock copolymer and peptides due to the solubilization of these compounds in SDS. However, the hydrophobicity of the polymer films increases in the presence of stearic acid, leading to the increase in surface pressure. The positive deviation of ΔA and the positive ΔG(mix)(E) values show the non-ideality and incompatibility of thermodynamically unstable mixed films. The thermodynamic results suggest that the stability and compatibility of the polymer, peptides and their mixed films with stearic acid in the presence of SDS are decreased, which is in good agreement with the results obtained for other polymeric systems.  相似文献   

19.
Heat-induced interfacial aggregation of a whey protein isolate (WPI) with a high content of beta-lactoglobulin (>92%), previously adsorbed at the oil-water interface, was studied by means of interfacial dynamic characteristics performed in an automatic drop tensiometer. Protein concentration in aqueous bulk phase ranging between 1x10(-1) and 1x10(-5) % wt/wt was studied as a variable. The experiments were carried out at temperatures ranging from 20-80 degrees C with different thermal regimes. During the heating period, competition exists between the effect of temperature on the film fluidity and the increase in mechanical properties associated with the interfacial gelation process. Interfacial crystallisation of food polar lipids (monopalmitin, monoolein, and monolaurin) previously adsorbed at the oil-water interface, was studied by interfacial dynamic characteristics (interfacial tension and surface dilational properties). The temperature, ranging between 40 and 2 degrees C, and the lipid concentration in aqueous oil phase, ranging between 1x10(-2) and 1x10(-4) % wt/wt, were studied as variables. Significant changes in interfacial dynamic characteristics associated with interfacial lipid crystallisation were observed as a function of lipid concentration in the bulk phase. Interfacial crystallisation of food polar lipids (monopalmitin, monoolein, and monolaurin) at the air-water interface, was studied by pi-A isotherms performed in a Langmuir trough coupled with Brewster angle microscopy (BAM). A condensation in monoglyceride monolayers towards lower molecular area was observed as the temperature decreased. This effect was attributed to lipid crystallisation at lower temperatures. BAM images corroborated the effect of temperature on the monolayer structure, as a function of the monoglyceride type.  相似文献   

20.
Subphase conditions have been optimized to obtain stable organophosphorous hydrolase (OPH-EC 3.1.8.1) as Langmuir films. The Langmuir film was characterized by surface pressure and surface potential-area isotherms and UV-Vis spectroscopy in situ. The interaction of an organophosphorous compound, namely Paraoxon, with the OPH film was investigated for various surface pressures. The stability of the monolayer and the evidence of the enzyme activity at air-water interface support the use of enzyme LB films as biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号