首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the surface chemical composition of WO3, Ta2O5, MoO3, and Nb2O5 oxides after Ar+ ion irradiation and those of the WO3 surface after He+ ion irradiation under high vacuum were investigated by X-ray photoelectron spectroscopy. Upon Ar+ ion irradiation with an energy of 3 keV, the pronounced effect of ion-beam metallization was observed on the WO3 oxide surface; a moderate effect was found for the Ta2O5 oxide surface; a weak one for the MoO3 oxide surface; and no effect was discovered for the Nb2O5 oxide surface. At the saturation dose, 44 at % W, 12 at % Ta, and 2 at % Mo form on the oxide surfaces. Irradiation by light He+ ions with energies of 1 and 3 keV results in WO3 surface metallization. At the saturation dose, 2 and 10 at % W (at 1 and 3 keV, respectively) forms on the oxide surface. The nature, mechanisms, and features of the oxide surface metallization effect induced by ion-beam irradiation are discussed.  相似文献   

2.
Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr2O3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H3O+ peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H3O+, as well as its constituents (H+, O+ and OH+) and a small amount of fluorine as F, but no F+ or F+ complexes (HF+, etc.). An electron stimulated desorption cross-section of σ+ ∼ 1.4 × 10−20 cm2 was determined for H3O+ from 316L stainless steel for hydrogen residing in surface chromium hydroxide.  相似文献   

3.
γ (fcc)→α (bcc) phase transformation in type 304 stainless steel has been observed after irradiation of He+ and H+ ions up to fluence levels of 1017 and 1019 ions/cm2, respectively. Depth selective conversion Mössbauer spectroscopy and surface-sensitive X-ray diffractometry were employed to study the effect of irradiation. It is shown that the amount of the ion induced phase is highly sensitive to the fluence, the ion species and depth from the surface. It is worth noting that H+ ion irradiation is rather ineffective in inducing the transformation.  相似文献   

4.
The surface of a triblock copolymer, containing a solid-phase drug, was investigated using 15 keV Ga+ and 20 keV C60+ ion beams. Overall, the results illustrate the successful use of a cluster ion beam for greatly enhancing the molecular ion and high-mass fragment ion intensities from the surface and bulk of the polymer system. The use of C60+ also established the ability to see through common overlayers like poly(dimethyl siloxane) which was not possible using atomic ion sources. Moreover, the use of C60+ allowed depth profiles to be obtained using primary ion dose densities in excess of 6 × 1014 C60+/cm2. Resulting sputter craters possess relatively flat bottoms without the need for sample rotation and reached depths of ca. 2 μm. AFM results illustrate the more gentile removal of surface species using cluster ions. Specifically, phase contrast and topographic images suggest the relatively high ion doses do not significantly alter the phase distribution or surface topography of the polymer. However, a slight increase in rms roughness was noticed.  相似文献   

5.
The depth profiles of Cu+, Ag+, and Au+ ions implanted into amorphous dielectric SiO2, Al2O3, and soda-lime silicate glass (SLSG) are simulated by the DYNA program. The algorithm follows projectile-ion-substrate-atom pair collisions giving rise to a dynamic variation in the phase composition in the surface layer of the irradiated material and takes into account surface sputtering. Ion implantation up to doses of ≤1016 ion/cm2 at low ion energies of 30, 60, and 100 keV is considered. The measured dynamic variation of the depth profiles of implanted ions as a function of the dose is compared with the standard statistical distribution calculated by the TRIM algorithm.  相似文献   

6.
A radio-frequency (RF) ion trap has been constructed for high resolution laser spectroscopy of metallic ions. Ions in externally generated laser plasma have been directly introduced into the RF ion trap. An Nd:YAG laser is used to vaporize and ionize sample metals placed behind a ring electrode. Both hyperbolic and cylindrical electrodes are successfully used for confinement of the ions. Trapped ions are detected either with a quadrupole mass spectrometer or with a photomultiplier for the measurement of laser-induced fluorescence. Metallic ions such as Ca+, Ba+, La+, Nd+, Tm+, Lu+, and Ta+ have been confined for the time range of several to 20 minutes in the presence of He buffer gas, and a doubly charged ion Ba2+ for several seconds. Some ions like Nd+, Lu+, Hf+, and Ta+ are found to be highly reactive with background gaseous molecules.  相似文献   

7.
The ion fractions, η+, of 10 keV argon particles, scattered from a damaged copper surface, are measured with a time of flight spectrometer. The damage was introduced by bombardment with argon ions. The scattering angle was 30°. The results for different angles of incidence, ψ, are reported. For Ψ < 10° the ion fraction is relatively high (~27% for Ψ = 4°) and decreases as Ψ increases. For Ψ = 15° the value of η+ is 7%, whereas for 21° < Ψ < 27° the value of η+ appears to be constant (~14%). An explanation is given by assuming interatomic ionization as well as neutralization processes along the trajectory of the scattered particles. The number of step-atoms, induced by ion bombardment, is estimated to be about 2 × 1014/cm2.  相似文献   

8.
Secondary ion emission from a beryllium surface is studied in the presence of hydrogen and oxygen. For submonolayer coverages of oxygen, the adsorption follows site-exclusion statistics. On this basis, the Be+ secondary ion yield and energy distribution can be separated into oxygen-dependent and oxygen-independent processes governed by the local properties of the surface. Ionic molecular species with hydrogen or oxygen present include Be2O+, Be2O?, BeO?, and BeH+ but not BeO+ or BeOH+. This result is inconsistent with emission in which the oxide molecule is formed in the near-surface vacuum region by agglomeration of individually sputtered surface atoms. For BeH+emission the opposite conclusion is reached.  相似文献   

9.
Selected rockforming minerals (plagioclase, augite, olivine, ilmenite, silicate and metal phases of the meteorite “Brenham”) as well as silicate and phosphate glasses were irradiated with heavy ions (4He+, 14N+, 20Ne+, 40Ar+, 56Fe+, Xe+ nat) in the energy range of 50-130 keV in order to study ion-induced sputtering. Sputtering yields were measured independently by means of multiple beam interferometry and particle track autoradiography.

The theory of sputtering by Sigmund, modified by Smith, was used to convert experimental heavy ion sputtering yields to H+- and He+-sputtering yields of the same target. Taking into account solar wind irradiation conditions at the lunar surface, an estimate of lunar erosion rates due to solar wind sputtering is given for the targets studied.  相似文献   

10.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

11.
Effects of platinum silicon, graphite and PET substrates on the secondary ion yield of sub-monolayer and multilayer samples of Cyclosporin A following 20 keV Au+, Au3+and C60+ impacts have been investigated. The obtained results of sub-monolayer samples show that platinum enhances the yield of the pseudo-molecular ion following Au+ and Au3+ impacts due to the high density of the substrate that enables the energy of the primary ions to be deposited near the surface. C60+ impacts on sub-monolayer samples are less effective, but there is an enhancement on PET substrates. Impacts of 20 keV Au+ and Au3+ are not very efficient on multilayer samples. 20 keV C60+ impacts enhance the yields significantly, especially for the relatively high molecular weight [M+H]+ ion.  相似文献   

12.
《Surface science》1996,366(2):L719-L723
Cs+ ion beams are scattered from an Si(111) surface chemisorbed with water. Scattering of Cs+ ions from the surface at the incidence energies of 10–;15 eV gives rise to reaction products CsOH+, CsOH+2 and CsSiO+. We interpret that these cluster ions are formed by desorption of X (X = OH, H2O and SiO), followed by Cs+X association and energy quenching near the surface. The Cs+ scattering method has potential advantages for adsorbate detection over desorption techniques, in particular for identification of molecular and thermally unstable species.  相似文献   

13.
The effects of C60 cluster ion beam bombardment in sputter depth profiling of inorganic-organic hybrid multiple nm thin films were studied. The dependence of SIMS depth profiles on sputter ion species such as 500 eV Cs+, 10 keV C60+, 20 keV C602+ and 30 keV C603+ was investigated to study the effect of cluster ion bombardment on depth resolution, sputtering yield, damage accumulation, and sampling depth.  相似文献   

14.
Enhancement of negative sputtered ion yields by oxygen (either O+2 bombardment or O2 gas with Ar+ bombardment) is demonstrated for Si?, As?, P?, Ga?, Cu? and Au?, sputtered from a variety of matrices. Because oxygen also enhances positive ion yields of the same species, this effect cannot be simply explained on the basis of existing sputtered ion emission models. To rationalize these phenomena, a surface polarization model is developed which invokes localized electron emissive or electron retentive sites associated with differently oriented surface dipoles in the oxygenated surface. Such sites are considered to dominate the emission of negative and positive ions respectively. The model is shown to correctly predict that Au+ and Au? ion yields are much more strongly enhanced by oxygen in dilute Au-Al alloys than in pure gold.  相似文献   

15.
Samples of PolyPropylene (PP) and PolyEthylene (PE) implanted with 150 keV F+, As+ and I+ ions with a dose of 1×1015 cm–2 were studied using standard Rutherford Back Scattering (RBS) technique. No fluorine atoms above the present RBS detection limit were observed in the ion-implanted polymers. The measured depth profiles of As and I atoms are significantly broader than those predicted by the TRIM code for pristine polymers. The differences can be explained by stepwise polymer degradation due to ion bombardment. Massive oxidation of the ion-implanted polymers is observed. The oxidation rate and the resulting oxygen depth profile depend strongly on the polymer type and implanted ion mass. In the samples implanted with F+ ions, an uniformly oxidized layer is built up with a mean oxygen concentration of 15 at.%. In the samples implanted with As+ and I+ ions, a non-uniform oxygen depth distribution is observed with two concentration maxima on the sample surface and in a depth correlated with implanted ion range.  相似文献   

16.
Reactivities of acridine derivatives (10‐benzylacridinium ion, 1a +, 10‐methylacridinium ion, 1b +, and 10‐methyl‐9‐phenylacridinium ion, 1c +) have been compared quantitatively for hydride transfer reactions with 1,3‐dimethyl‐2‐substituted phenylbenzimidazoline compounds, 2Ha–h . Reactions were monitored spectrophotometrically in a solvent consisting of four parts of 2‐propanol to one part of water by volume at 25 ± 0.1 °C. Reduction potentials have been estimated for acridine derivatives by assuming that the equilibrium constants for the reductions of 1a + –c + by 2Hb would be the same in aqueous solution and accepting ?361 mV as the reduction potential of the 1‐benzyl‐3‐carbamoylpyridinium ion. The resulting reduction potentials, E, are ?47 mV for 1a +, ?79 mV for 1b +, and ?86 mV for 1c +. Each of acridine derivatives gives a linear Brønsted plot for hydride transfer reactions. The experimental slopes were compared with those obtained by Marcus theory. This comparison shows that the kinetic data are consistent with a one‐step mechanism involving no high‐energy intermediates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

An improved r.f. heavy ion source, which can operate with gases, liquids and solids is described. The operating temperature of the ion source may reach 1000°C. It can therefore, generate ion beams of a considerable number of elements. including metallic ions. At present, ion beams of S+, Al+, As+. Zn+, Mg+, Cd+, Ag+, Sm+, Te+, Se+, Sn+, In+, Hg+, etc. have been extracted. The extracted total beam current ranges from several hundred microamperes to the order of milliampere. The useful fraction of ion in the total beam is 70–90%. Life span of the source ranges from 40 hours to more than 100 hours. The emittance of the source is 3 × 10?6 cm rad. Structure and operating characteristics of this ion source are discussed.  相似文献   

18.
The type, energy, ion dose, and heating temperature required to ensure a stable minimum work function of a surface in one experimental cycle (at least 2–3 min) are determined. Secondary ion mass spectrograms are recorded using Cs+, Ba+, and Ar+ ions. Cu, Al, and Mo samples are studied. The optimum ion implantation conditions and the activation temperature that provide a stable minimum work function of the sample surfaces are found. The samples implanted by Ba+ ions withstand higher temperature and current loads than the samples implanted by Cs+ ions. However, the work function in the case of Cs+ ions decreases stronger (to 1.9 eV). It is shown that neutral sputtered particles do not leave the surface at eφ ≤ 1.85–1.90 eV.  相似文献   

19.
We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (1017-1019 ions/cm2) and incidence angles (Θ = 0-80°). Carbon bombarded by 20 keV Ga+ either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75°. Similar trends of decreasing yield are found for H2O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.  相似文献   

20.
When the surface of a solid is bombarded with ions a fraction of the primary energy is reemitted by ion reflection and sputtering. The contribution of ion reflection or sputtering to energy reflection is determined by the mass ratio of the bombarding ions to the target atoms.1,2 In the case of light ions the contribution of reflected ions is dominant. Results for He+ and Ne+ bombardment were described in a previous paper.3 The present paper deals with results for Ar+, Kr+, and Xe+ bombardment of the same targets as investigated before.3 The energies of the mass selected bombarding ions range from 9 to 16 keV. The measurements were carried out by means of the thermic detector described in a separate paper.4 For the given mass ratios most of the reemitted energy is related to sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号