首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(methyl methacrylate) membranes of different fractional free volume (FFV) were prepared by dry casting from different solvents. Free volume data were determined by means of Bondi method and positron annihilation lifetime spectroscopy (PALS). It was found that both the boiling point and the solubility parameter of casting solvent affect the membrane’s free volume. It was believed that the difference in free volume was arisen from the difference in polymer packing.The gas permeability is higher when membranes are cast from higher molecular weight PMMA. But the plasticizing effect of CO2 is less serious compared with the low molecular weight one. The high molecular weight PMMA membrane also has an extremely high O2/N2 selectivity, indicating its high structure uniformity. These results indicate that membranes made from polymer of higher molecular weight have the advantages of high permeability, gas selectivity and are less sensitive to CO2 plasticization. The intrinsic gas transport properties such as the permeability, solubility and diffusivity of O2, N2, and CO2 are measured or calculated. The effects of fractional free volume on membrane gas separation properties were investigated. It was found that the fractional free volume had no definite effects on gas solubility, but the gas permeability and diffusivity increased accordingly to the measured free volume.  相似文献   

2.
Despite efforts by the membrane community to develop polymeric materials with improved O2/N2 separation performance, limited progress has occurred for almost a decade. Molecular sieving media, which can exhibit gas separation properties superior to polymers, tend to be brittle and uneconomical to produce for large‐scale membrane separation processes. Considering this, the polymer structures investigated in this work were designed to mimic aspects of the structure of molecular sieving media such as zeolites and carbon molecular sieves while maintaining the processability associated with polymers. Significantly attractive gas separation material properties were obtained using hyper rigid polypyrrolone copolymers with controlled packing disruptions between flat, packable segments. The gas transport properties in the materials changed dramatically as a result of different average interchain spacing. Moreover, all of the polypyrrolones studied in this work exhibited performance lying on or above the existing O2/N2 upper bound trade‐off line between permselectivity and permeability. These results, therefore, may point the way to a new cycle of membrane materials improvements for gas separations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1235–1249, 1999  相似文献   

3.
Experimental and theoretical results of studying gas permeation through porous membranes are presented. In order to mimic an asymmetric membrane two porous ceramic disks with different pore radii were arranged in series. Besides the possibility to perform conventional permeation measurements, the applied experimental setup permits the determination of the pressure at the interface between the two discs. To predict the performance of the asymmetric structure, in preliminary experiments structure parameters were determined for both membranes separately. For the same total pressure difference across the two-disk arrangement, different interlayer pressures and fluxes were predicted and detected experimentally depending on the flow direction.  相似文献   

4.
Gas transport properties of semicrystalline films of poly(2,2,4,4-tetramethyl cyclobutane carbonate) (TMCBPC) were studied. Permeability coefficients for He, O2, N2, CH4, and CO2 at 35°C for pressures between 1 and 20 atm are reported as well as sorption isotherms for N2, CH4, and CO2 at the same conditions. The permeability coefficients for TMCBPC are larger than corresponding values for the aromatic bisphenol-A polycarbonate (PC) and tetramethyl bisphenol-A polycarbonate (TMPC), even though the TMCBPC films are semicrystalline. These results are explained on the basis of the larger free volume available for permeation in this polymer. Significant TMCBPC plasticization by CO2 was also observed and this causes typical time-dependent behavior. The plasticization process starts at very low pressures compared with the behavior of aromatic polycarbonates PC and TMPC. This early onset of plasticization seems to be related also to the larger free volume in the amorphous phase of TMCBPC which favors high gas sorption. The diffusion coefficients for TMCBPC are also larger than those reported for the aromatic polycarbonates PC and TMPC. Ideal gas separation factors were found to follow the usual trend; that is, as permeability increases, the ideal separation factor decreases. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Polypropylene membranes modified with natural and organically modified montmorillonite clays were prepared. The permeability, diffusivity and solubility of helium, oxygen and nitrogen were determined for the unfilled and filled membranes over the temperature range 25-65 °C. Physical properties of polypropylene membranes were investigated using X-ray diffraction, thermogravimetric analyser, tensile testing and differential scanning calorimetry. The results showed that the filled membranes exhibit lower gas permeability compared to the unfilled polypropylene membrane. For helium, a reduced diffusivity is mainly responsible for the reduction in the permeability, in contrast, for nitrogen and oxygen, both diffusivity and solubility were reduced by the presence of fillers. The X-ray diffraction spectra showed that the incorporation of the unmodified and modified clay did not affect the crystallographic nature of polypropylene.  相似文献   

6.
A methodology based on adsorption-branch porosimetry is described for in situ measurement of the adsorption of condensable gases within the pore structure of inorganic membranes. The method is applied to the study of n-hexane and p-xylene adsorption in a high-silica, MFI zeolite membrane. The results, interpreted in terms of a simple model for competitive adsorption effects on the permeance of a non-adsorbing gas, yield Langmuir adsorption constants and Henry’s law constants for n-hexane and p-xylene that are in excellent agreement with measurements on bulk materials. The method is proposed for the fundamental study of fouling characteristics of inorganic membranes, especially in cases where a true bulk surrogate is not available.  相似文献   

7.
Permeabilities of N2, Ar, O2, CO2, and H2 gases in PEMA (Polyethylmethacrylate) membranes have been measured above and below glass transition in the temperature range of 25–70 °C. The permeabilities of the gases were observed increasing with temperature. Arrhenius plot of permeability versus temperature data showed that there is a slope discontinuity at near to Tg of PEMA. In addition, the effects of membrane preparation parameters by solvent casting method (percentage of polymer in solvent, annealing temperature, annealing time, evaporation temperature, and evaporation time) have been investigated by using homogenous dense membranes of PEMA. It is observed that membrane preparation parameters strongly affect the membrane performance and the reproducibility of the permeability measurements. On the other hand, the effect of polymer structure on membrane performance has been investigated. Comparison of the permeabilities of N2, Ar, O2, CO2, and H2 gases in PEMA and PMMA membranes shows that PMMA membranes have smaller permeabilities and higher selectivities than PEMA membranes because of their higher glass transition temperature, Tg. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3025–3033, 2007  相似文献   

8.
A detailed study of gas permeation, thermodynamic properties and free volume was performed for a novel polymer of intrinsic microporosity (PIM-1). Gas permeability was measured using both gas chromatographic and barometric methods. Sorption of vapors was studied by means of inverse gas chromatography (IGC). In addition, positron annihilation lifetime spectroscopy (PALS) was employed for investigation of free volume in this polymer. An unusual property of PIM-1 is a very strong sensitivity of gas permeability and free volume to the film casting protocol. Contact with water in the process of film preparation resulted in relatively low gas permeability (P(O2) = 120 Barrer), while soaking with methanol led to a strong increase in gas permeability (P(O2) = 1600 Barrer) with virtually no evidence of fast aging (decrease in permeability) that is typical for highly permeable polymers. For various gas pairs (O2/N2, CO2/CH4, CO2/N2) the data points on the Robeson diagrams are located above the upper bound lines. Hence, a very attractive combination of permeability and selectivity is observed. IGC indicated that this polymer is distinguished by the largest solubility coefficients among all the polymers so far studied. Free volume of PIM-1 includes relatively large microcavities (R = 5 Å), and the results of the PALS and IGC methods are in reasonable agreement.  相似文献   

9.
Characterization of microporous membranes for use in membrane contactors   总被引:11,自引:0,他引:11  
Methods of selecting applicable membranes for use in membrane contactors for flue gas desulfurization are proposed in this paper. The mass transfer mechanism for SO2 diffusion through gas filled pores is explored by simple measurements in order to identify suitable membrane structures for use in contactors for flue gas cleaning. It is attempted to correlate the experimentally determined membrane mass transfer coefficient to intrinsic physical properties of the membrane by applying theoretical and empirical correlations for the porosity-tortuosity relationship of the porous structure. Thereby limiting fluxes can be predicted with good accuracy from data quoted in the manufactures catalogue.  相似文献   

10.
Gas transport properties of the polyphenylene ethers poly(2,6-dimethyl-1,4-phenylene oxide)PDMPO, and poly(2,6-diphenyl-1,4-phenylene oxide), PDPPO, and the thioether poly(1,4-phenylene sulfide), PPS, have been measured as a function of pressure and temperature. The PPS material and free volume correlations were used to estimate the behavior of the unavailable poly(1,4-phenylene oxide), PPO. The results show that symmetrical substitution of phenyl groups on the backbone of polyphenylene ether, PDPPO, increases the gas transport properties by one order of magnitude relative to the unsubstituted material, PPO. Symmetrical methyl substitution, PDMPO, however, increase the permeability, apparent diffusion and sorption coefficients even further. The gas transport coefficients correlate with the fractional free volume of the polymers. PDMPO has the largest fractional free volume and gas transport coefficients followed by PDPPO and the PPS. The results show that substitution of phenyl groups, which leads to polymers that have better thermal and oxidative stability than methyl substituted ones, can be a useful means for increasing free volume and gas permeability coefficients. While methyl groups appear to be more effective for the latter, the enhanced chemical stability of phenyl rings may be useful when gas separation membranes are to be used in harsh environments. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Gas permeation tests using nitrogen, oxygen, hydrogen, helium and carbon dioxide were performed to assess how membrane modification procedures affect the separating layer morphology of thin-film composite reverse osmosis membranes. Gas selectivity data provided evidence for the presence of nanoscale separating layer defects in dry samples of six commercial membrane types. These defects were eliminated when the membrane surface was coated with a polyether–polyamide block copolymer (PEBAX 1657), as indicated by a 25-fold decrease in gas permeance and at least a 2-fold increase in most selectivity values. Treatment with n-butanol followed by drying reduced water flux and gas flux by 30% and 75%, respectively, suggesting that using n-butanol as a solvent for applying coatings negatively affects membrane performance. The results of this study demonstrate that gas permeation measurements can be used to detect morphological features that impact gas and water membrane flux.  相似文献   

12.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

13.
Typically, materials with high-performance transport properties such as zeolites, carbon molecular sieves, or hyper rigid polymers are inherently difficult or impossible to characterize by steady-state membrane permeation experiments used for conventional polymers. Diffusion coefficients determined by transient sorption, a measurement easily performed on brittle media, are analyzed here and compared to those determined by steady-state permeation/sorption and transient permeation for a glassy polymer and a carbon molecular sieve. Average and local diffusion coefficients are extrapolated to zero upstream partial pressure to eliminate effects caused by concentration dependence. Good agreement between the techniques was observed for the glassy polymer. On the other hand, carbon molecular sieves, possessing a more complex morphology, exhibit a greater difference in diffusion coefficients determined by the various techniques. Nevertheless, comparison of the analysis techniques is shown to provide potentially valuable insights into the morphological features of such carbon molecular sieves. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1747–1755, 1998  相似文献   

14.
Polycrystalline randomly oriented defect free zeolite layers on porous α-Al2O3 supports are prepared with a thickness of less than 5 μm by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite poze, the flux of the weakly adsorbing molecule is suppressed by the sorption and the mobility of the strongly adsorbing molecule resulting in pore-blocking effects. The separation of these mixtures is mainly based on the sorption and completely different from the permselectivity. At low loadings of the strongly adsorbing molecules the separation is based on the sorption and the diffusion and is the same as the permselectivity. Separation factors for the isomers of butane (n-butane/isobutane) and hexane (hexane/2,2-dimethylbutane) are respectively high (10) and very high (> 2000) at 200°C. These high separation factors are a strong evidence that the membrane shows selectivity by size-exclusion and that transport in pores larger than the zeolite MFI pores (possible defects, etc) can be neglected.  相似文献   

15.
16.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

17.
Diarylacetylene monomers containing substituted biphenyl ( 1a – f ) and anthryl ( 1g ) groups were synthesized and then polymerized with TaCl5n‐Bu4Sn catalyst to produce the corresponding poly(diarylacetylene)s ( 2a – g ). Polymers 2a – f were soluble in common organic solvents such as cyclohexane, toluene, and chloroform. According to thermogravimetric analysis, the onset temperatures of weight loss of the polymers were over 400 °C in air, indicating considerably high thermal stability. Free‐standing membranes 2a and 2c – e were prepared by the solution casting method. Desilylation of Si‐containing membrane 2c was carried out with trifluoroacetic acid to afford 3c . All the polymer membranes, especially those having twisted biphenyl groups, exhibited high gas permeability; for example, their oxygen permeability (PO 2) values ranged from 130 to 1400 barrers. Membrane 2d having two chlorine atoms in the biphenyl group showed the highest gas permeability (PO 2 = 1400 barrers) among the present polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 861–868, 2010  相似文献   

18.
To characterize solute transport in nanofiltration (NF) the Spiegler–Kedem equation requires that two coefficients be determined for two-component solutions (a solute in water), solute permeability ω and reflection coefficient σ. For salts both coefficients strongly and in a complex way depend on concentration, which greatly complicates their evaluation from experiments. For this reason, the parameters are usually assumed constant for a given feed and the concentration dependence is assessed from flux–rejection curves for several feeds. This procedure however ignores the fact that the solute concentration and hence the coefficients significantly vary across the membrane. One way to overcome this inconsistency and address concentration dependence is to use physical models explicitly introducing exclusion mechanism(s) and fitting relevant membrane-specific parameters, such as fixed charge or dielectric properties. This procedure often fails to produce unique values of parameters for a given membrane and different salts. In the present study a new phenomenological approach is proposed and critically analyzed, based on the assumption of a similar concentration dependence of ω and 1 − σ, previously shown to be valid under fairly general conditions, thereby the Peclét coefficient A = (1 − σ)/ω may be assumed to be independent of concentration. The coefficients and their concentration dependence for a given solute may be directly and consistently evaluated by fitting flux–rejection data for several feeds and fluxes to numeric solution of the modified transport equations without the need to invoke specific physical models. The values of transport parameters deduced in this way for representative membranes and salts allow important conclusions regarding the transport mechanism. In particular, the roles of different mechanisms in overall salt exclusion could be addressed directly from the variation of ω or 1 − σ with concentration. On the other hand, the value of the Peclét coefficient, free of the effect of salt partitioning, may be analyzed in terms of hindered transport. Using the proposed method, this value was found to be very small for studied thin-film composite membranes, which may significantly simplify the transport equations.  相似文献   

19.
Aromatic polyamides, designed for evaluation as gas separation membranes, were processed into dense films, whose properties were measured with special emphasis on their mechanical and thermal properties. The polymers had been synthesized from monomers bearing side substituents, such as methyl, iso-propyl or tert-butyl, and various hinge-like connecting linkages of p-phenylene moieties, which yielded amorphous aromatic polyamides, with improved solubility, high glass transition temperatures (over 250 °C) and excellent mechanical properties (tensile strength about 100 MPa, and moduli about 2.0 GPa). The permeability of the polymer films were investigated using helium, oxygen, nitrogen, carbon dioxide and methane. Gas permeability typically increased with increasing free volume, and, in general, free volume could be related to the chemical structure. The analysis of the transport parameters (permeability, diffusivity and solubility coefficients) as a function of the chemical structure, confirmed the predominant role of the side substituents and of the linking groups connecting phenylene units on the permeation properties. Besides, a molecular modelling study carried out via computational chemistry, made it clear that an acceptable theoretical explanation can be given of how the nature of hinge groups between aromatic rings can affect torsional mobility and gas diffusion of aromatic polyamides.

The experimental aromatic polyamides of this report, as a whole, showed a favourable combination of permeability–selectivity, better than that of conventional polyamides and that of most engineering thermoplastics, confirming the hypothesis that the incorporation of side bulky substituents is a convenient approach to hinder the inherently efficient chain packing of polyamides.  相似文献   


20.
The permeabilities and solubilities of five gases are reported for bisphenol-A polycarbonate (PC), tetramethyl polycarbonate (TMPC), and tetramethyl hexafluoro polycarbonate (TMHFPC) at temperatures up to 200°C. The temperature dependence of permselectivity is discussed in terms of solubility and diffusivity selectivity changes with temperature for CO2/CH4 and He/N2 gas separations. The activation energies for permeation and diffusion and the heats of sorption are also reported for each gas in the three polycarbonates. Analysis of these values provides a better fundamental understanding of the effect of polymer-penetrant interactions and polymer backbone structure on the temperature dependence of the transport and sorption properties of gases in membrane separation processes. Important factors affecting the solubility and diffusivity selectivity losses or gains with increased temperature are also identified through correlation of these data with physical properties of the gases and polymers. These conclusions provide a framework for choosing the most promising membrane materials for particular gas separations at elevated temperatures. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号