首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sitting-atop complexation of meso-tetraarylporphyrins and its para-substituted derivatives (H2t(4-X)pp, X:H, Br, Cl, CH(CH3)2, OCH3, CH3), as electron donors, with zirconyl, as an electron acceptor, have been investigated spectrophotometrically in chloroform. The mole ratio studies based on physicochemical techniques were employed clearly and revealed the formation of 1:1 sitting-atop complexes which was confirmed by UV–vis, 1H NMR and IR spectroscopic data. The value of the formation constant was estimated for each complex using a nonlinear optimization of the complex absorbance vs. mole ratio data by package KINFIT. The results showed that the stability of these complexes decreases with the temperature enhancement. Thermodynamic parameters, ΔG°, ΔH° and ΔS°, of the SAT complexes have been determined from the temperature dependence of formation constants by Van’t Hoff equation. Also, the influence of the substituents of the aryl rings in H2t(4-X)pp on the stability of the SAT complexes is discussed.  相似文献   

2.
3.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-Y results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted-acid groups. This hydrogen-bonding interaction leads to activation, in the infrared, of the fundamental N–N stretching mode, which appears at 2334 cm−1. From infrared spectra taken over a temperature range, the standard enthalpy of formation of the OH···N2 complex was found to be ΔH0 = −15.7(±1) kJ mol−1. Similarly, variable-temperature infrared spectroscopy was used to determine the standard enthalpy change involved in formation of H-bonded CO complexes for CO adsorbed on the zeolites H-ZSM-5 and H-FER; the corresponding values of ΔH0 were found to be −29.4(±1) and −28.4(±1) kJ mol−1, respectively. The whole set of results was analysed in the context of other relevant data available in the literature.  相似文献   

4.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

5.
Equilibrium, kinetics and thermodynamic aspects of sorption of Promethazine hydrochloride (PHCl) onto iron rich smectite (IRS) from aqueous solution were investigated. The effect of pH on sorption of PHCl onto IRS was also found out. Experimental data were evaluated by using Langmuir, Freundlich and Dubinin–Raduschkevich (DR) isotherm equations. Freundlich and DR equations provided better compatibility than Langmuir equation. Besides, it was determined that the maximum sorption of PHCl takes place at about pH 5. From kinetic studies, it was obtained that sorption kinetics follow pseudo-second-order kinetic model for PHCl sorption onto IRS. When thermodynamic studies are concerned, the values of activation energy (Ea), ΔG°, ΔH° and ΔS° were obtained. ΔG° values are in the range of −8.84 and −9.45 kJ mol−1 indicating spontaneous nature of physisorption. The negative value of the ΔH° (−3.20 kJ mol−1) indicates exothermic nature of adsorption. FTIR analysis and SEM observations of IRS and PHCl adsorbed IRS were also carried out. Sorption experiments indicate that IRS may be used effectively for the adsorption of PHCl.  相似文献   

6.
The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H2SO4 modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin–Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (RL) indicated that chitosan–H2SO4 was favorable for Pb(II) and Cu(II) adsorption.  相似文献   

7.
Low-temperature heat capacities of the solid compound NaCuAsO4·1.5H2O(s)were measured using a precision automated adiabatic calorimeter over a temperature range of T=78 K to T=390 K.A dehydration process occurred in the temperature range of T=368-374 K.The peak temperature of the dehydration was observed to be TD=(371.828±0.146)K by means of the heat-capacity measurement.The molar enthalpy and entropy of the dehydration were ΔDHm=(18.571±0.142)kJ/mol and ΔDSm=(49.946±0.415)J/(K·mol),respectively.The experimental values of heat capacities for the solid(Ⅰ)and the solid-liquid mixture(Ⅱ)were respectively fitted to two polynomial equations by the least square method.The smoothed values of the molar heat capacities and the fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated at an interval of 5 K.  相似文献   

8.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminophenol. The metal complexes of Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with the ligand are prepared in good yield from the reaction of the ligand with the corresponding metal salts. They are characterized based on elemental analyses, IR, solid reflectance, magnetic moment, electron spin resonance (ESR), molar conductance, 1H NMR and thermal analysis (TGA). From the elemental analyses data, the complexes are proposed to have the general formulae [M(L)(H2O)nyH2O (where M = Mn(II) (n = 0, y = 1), Fe(II) (n = y = 0), Co(II) (n = 2, y = 0), Ni(II) (n = y = 2), Cu(II) (n = 0, y = 2) and Zn(II) (n = y = 0), and [MCl(L)(H2O)]·yH2O (where M = Cr(III) and Fe(III), y = 1–2). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negatively tetradentate manner with ONNO donor sites of the azomethine N and deprotonated phenolic-OH. This is supported by the 1H NMR and ESR data. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II) complexes), tetrahedral (Mn(II), Fe(II) and Zn(II) complexes) and square planar (Cu(II) complex). The thermal behaviour of these chelates is studied and the activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTGA curves using Coats-Redfern method. The parent Schiff base and its eight metal complexes are assayed against two fungal and two bacterial species. With respect to antifungal activity, the parent Schiff base and four metal complexes inhibited the growth of the tested fungi at different rates. Ni(II) complex is the most inhibitory metal complex, followed by Cr(III) complex, parent Schiff base then Co(II) complex. With regard to bacteria, only two of the tested metal complexes (Mn(II) and Fe(II)) weakly inhibit the growth of the two tested bacteria.  相似文献   

9.
The complexation reaction between palladium (II) acetate, and 1,1′-bis(diphenylphosphino)ferrocene, DPPF, was investigated in two different deuterated solvents CDCl3 and DMSO at various temperatures using 31P NMR spectroscopy. The exchange between free and complexed DPPF is slow on the NMR time scale and consequently, two 31P NMR signals were observed. At metal ion-to-ligand mole ratio larger than 1, only one 31P NMR signal was observed, indicating the formation of a 1:1 Pd2+–DPPF complex in solution. The formation constant of the resulting 1:1 complexes was determined from the integration of two 31P signals. The values of the thermodynamic parameters (ΔH, ΔS and ΔG298) for complexation were determined from the temperature dependence of stability constants. It was found that, in both solvents, the resulting complex is mainly entirely enthalpy stabilized and the ΔH compensates the TΔS contribution.  相似文献   

10.
The interactions of calf thymus deoxyribonucleic acid (ct-DNA) with two antitumour drugs (5-fluorouracil and tegafur) in aqueous buffer solution (pH 7.40) have been investigated using nano-watt-scale isothermal titration calorimetry (ITC), circular dichroism (CD), ultraviolet absorption (UV) and fluorescence spectroscopy. Thermodynamic parameters, i.e., binding proportions and constants, standard changes of enthalpy (ΔH°), Gibbs free energy (ΔG°) and entropy (ΔS°) have been derived from the calorimetric data. The binding ratios of 5-fluorouracil and tegafur with base pairs in ct-DNA are 1:3 and 1:4, respectively. The thermodynamic parameters have been discussed according to the influence of drugs on molecular structure of the DNA shown spectrogram. The results indicate that molecule of 5-fluorouracil or tegafur can intercalate itself into the intra-molecular space formed by DNA double helix and cause some changes in the secondary structure of DNA molecule.  相似文献   

11.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

12.
A temperature study was performed on micelle formation of a series of homologous cationic surfactants having organic counterions (alkanesulfonates) with carbon numbers ranging from 1 to 4: dodecylammonium salts of methanesulfonate (DAMS), ethanesulfonate (DAES), propanesulfonate (DAPS), and butanesulfonate (DABS) in water. The critical micelle concentrations (CMCs) and the degree of counterion binding (β) were determined at different temperatures ranging from 5 to 50°C by means of conventional electric conductance measurements. From the temperature dependence of β as well as CMC, Gibbs energy ΔG0m, enthalpy ΔH0m, and entropy ΔS0m, on micelle formation, were estimated for the respective surfactants. As for the temperature dependence of CMC for these surfactants, the temperature-CMC curves have a minimum around 30°C and show that the CMC at each temperature is lowered by about 3 mmol dm-3 per methylene group in the alkyl chain of the counterions. The relationship between β and temperature suggested that the counterion of MS- behaves most similarly to common univalent ions such as halide ions. In contrast, PS- and BS-, having a stronger ability to lower CMC and to promote association of surfactant ions with counterions as well as of surfactant ions themselves, behave more like those of surfactant ions, and ES- shows the most complicated character between those of common univalent ions and organic ions. However, the temperature dependence of enthalpy change, ΔH0m demonstrates that these four surfactants are divided into two groups: (1) DAMS and DAES and (2) DAPS and DABS. In addition, the entropy change ΔS0m as a function of alkyl chain length gives evidence that the contribution of the entropy term to the Gibbs energy on micelle formation clearly separates between DAES (m = 2) and DAPS (m = 3). A similar discontinuity is found even in the plot of ΔG0m versus carbon atom number of alkyl chain, m, and in the plot of ΔG0m versus estimated hydrodynamic radius of counterions. All the results obtained have indicated that lengthening the alkyl chains initially hinders micelle formation, but the longer chains are markedly effective in lowering the CMC and probably in increasing the aggregation number, owing to enhanced hydrophobic interaction between counterion and the micellar surface and/or core.  相似文献   

13.
The molecular interactions of 4-Nitrophenol (4NP) with free-base meso-tetraarylporphyrins (H2T(4-X)PP; X = OCH3, CH3, H, Cl) have been studied. The formation constants and other thermodynamic parameters were calculated by using UV-Vis spectrophotometry titration results. The formation constants show the following trend relative to X substituent of porphyrins: H2T(4-CH3O)PP > H2T(4-CH3)PP > H2TPP > H2T(4-Cl)PP.  相似文献   

14.
The micellization behavior of bis cationic gemini surfactant, N,N′-dihexadecyl-N,N,N′,N′-tetramethyl-1,12-dodecanediammonium dibromide [C16H33N+(CH3)2-(CH2)12-N+(CH3)2C16H33, 2Br] has been studied in binary aqueous mixtures of dimethyl sulfoxide, methanol, 1,4-dioxane, glycerol and ethylene glycol by conductivity and surface tension measurements at 300 K. The critical micellar concentration, degree of micelle ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (Amin), Gibbs free energy of micellization (ΔGm°), the surface pressure at cmc (πcmc), and the Gibbs energy of adsorption (ΔGad°) of the gemini surfactant have also been determined. The cmc, α, Amin increases where as (ΔGm°), Гmax, and πcmc decreases with increasing volume percentage of the solvents in the solvent–water binary mixture. The interfacial properties of the gemini surfactant, solute–solute, solvent–solute interactions and the effectiveness of a surface-active molecule in binary solvent systems have been discussed.  相似文献   

15.
The crystal structure of the title compound was determined (crystal data at 143 K: triclinic, space group P−1, Z=4, a=9.538(2) Å, b=11.638(2) Å, c=14.473(2) Å, α=88.647(3)°, β=89.875(3)°, γ=83.835(3)°, V=1596.9(4) Å3). In the crystal there exist two kinds of tetrameric O–HO hydrogen-bond (H-bond) systems that are quite similar to each other. The oxygen atoms accept also intermolecular C–HO H-bonds. The two types of the H-bonds connect the molecules to an infinite two-dimensional supramolecular unit, the stacking of which is aided by an intermolecular C–Hπ H-bond. A phase transition with ΔHt=4.4±0.1 kJ/mol was found at around 420 K.  相似文献   

16.
Cis-[Cr(en)2(SC2O3)]Cl·H2O has been synthesized by a new method involving the reaction of cis-[Cr(en)2Cl2]Cl with K2SC2O3 at 60°C and the kinetics of the acidic aquation of this complex have been studied. The complex has been characterized by IR and electronic spectroscopic techniques. The aquation of the purified product was carried out at 30, 40 and 50°C in acidic media at constant ionic strength. The experimental result indicates a pH-dependent aquation of the compound in HCl solutions to yield H2S and ethylenediamine. The plot of the rate of the reaction versus the square of the proton concentration, [H+]2, produces a straight line giving the pseudo-first-order rate constant, kobs. Activation energies were found to be proportional with the entropies in various acidic solutions. The “isokinetic temperature” of 285 K and the free energy of activation, ΔG‡ = 94.7 kJ mol−1, were determined from the linear relationship. The results of experiments for the aquation of this compound suggest a mechanism through formation of a conjugate acid of an asymmetric atom, and the Cr---S bond cleavage is considered as the rate determining step.  相似文献   

17.
Strontium Sorption on Hematite at Elevated Temperatures   总被引:1,自引:0,他引:1  
Acid–base reactions and surface complexation of Sr(II) at the hematite/water interface have been studied by means of potentiometric titrations at three different temperatures: 25, 50, and 75°C. Equilibrium measurements were performed in 0.1 M NaCl. In the evaluation of equilibrium models for the acid–base reactions and complexation reactions in the three-component system H+ ---(FeOH)---Sr2+, the constant capacitance model was applied. During the titrations with Sr, aliquots of the suspension were sampled at in several points. The aqueous concentrations of Sr were analyzed by atomic absorption spectrometry. Treatment of data included tests for formation of both inner-sphere and outer-sphere complexes of different stoichiometric composition. The proposed equilibrium model consists of the following surface complexes of inner sphere type: FeOHSr2+ and FeOSrOH. Besides the stability constants for the surface complexes, the thermodynamic parameters ΔH and ΔS were evaluated. The combined effect of a decrease in pHpzc with increasing temperature and positive enthalpies of surface complex formation favors adsorption of Sr at elevated temperatures.  相似文献   

18.
Nickel(II) complexes of general empirical formula, NiLX·nH2O (L = deprotonated form of the Schiff base formed by condensation of N-methyl-S-methyldithiocarbazate with 2-hydroxybenzaldehyde or 5-bromo-2-hydroxybenzaldehyde; X = Cl, Br, NCS, AcO or CN; n = 0, 1) have been prepared and characterized by a variety of physico-chemical techniques. Magnetic and spectroscopic data support a square-planar structure for these complexes. The crystal structure of the [Ni(ONMeS)CN]·H2O complex (ONMeS = anionic form of the 2-hydroxybenzaldehyde Schiff base of N-methyl-S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted square-planar structure in which the Schiff base is coordinated to the nickel(II) ion as a uninegatively charged anion coordinating via the phenolic oxygen atom, the azomethine nitrogen atom and the thione sulfur atom. The fourth coordination position is occupied by a cayano ligand. The antifungal properties of the Schiff bases and their nickel(II) complexes were studied against three plant pathogenic fungi. The ligands display moderate fungitoxicities against these organisms but their nickel(II) complexes are less active than the free ligands.  相似文献   

19.
Summary A ternary solid complex Gd(Et2dtc)3(phen) has been obtained from reactions of sodium diethyldithiocarbamate (NaEt2dtc), 1,10-phenanthroline (phen) and hydrated gadolinium chloride in absolute ethanol. The title complex was described by chemical and elemental analyses, TG-DTG and IR spectrum. The enthalpy change of liquid-phase reaction of formation of the complex, ΔrHΘm(l), was determined as (-11.628±0.0204) kJ mol-1 at 298.15 K by a RD-496 III heat conduction microcalorimeter. The enthalpy change of the solid-phase reaction of formation of the complex, ΔrHΘm(s), was calculated as (145.306±0.519) kJ mol-1 on the basis of a designed thermochemical cycle. The thermodynamics of reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A), the reaction order (n), the activation enthalpy (ΔrHΘ), the activation entropy (ΔrSΘ), the activation free energy (ΔrGΘ) and the enthalpy (ΔrHΘ), were obtained by combination of the thermodynamic and kinetic equations for the reaction with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, ΔcU, was determined as (-18673.71±8.15) kJ mol-1 by a RBC-II rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHΘm, and standard enthalpy of formation, ΔfHΘm, were calculated to be (-18692.92±8.15) kJ mol-1 and (-51.28±9.17) kJ mol-1, respectively.  相似文献   

20.
The kinetics of the acid dissociation of copper(II) complexes of novel C-functionalized macrocyclic dioxotetraamines has been studied by means of a stopped-flow spectrophotometer. The acid dissociation rate follows the law Vd = CcomkK1K2H 2/(1+K1H+K1K2H 2). From the experimental facts we have obtained, the dissociation kinetics are interpreted by a mechanism involving the negatively charged carbonyl oxygen of the complex being rapidly protonated in a pre-equilibrium step, the rate-determining step being intramolecular hydrogen (enolic tautomer) migration (to imine nitrogen). The dissociation rate reached a plateau in the strongly acidic solution. By means of temperature coefficient method, ΔH φ, ΔS φ of the pre-equilibrium step and ΔH, ΔS of the rate-determining step were obtained. The results of 13-membered macrocyclic dioxotetraamines have been discussed. The influence of the substituents to the acid dissociation rates has also been discussed. The Bronsted type linear free energy relationships do also exist in these C-functionalized dioxotetraamine copper(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号