首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
Conventional data envelopment analysis (DEA) assists decision makers in distinguishing between efficient and inefficient decision making units (DMUs) in a homogeneous group. Standard DEA models can not provide more information about efficient units. Super-efficiency DEA models can be used in ranking the performance of efficient DMUs and overcome this obstacle. Because of the possible infeasibility, the use of super efficiency models has been restricted. This research proposes a methodology to determine a distance-based measure of super-efficiency. The proposed methodology overcomes the infeasibility problem of the existing ranking methodologies. The applicability of the proposed model is illustrated in the context of the analysis of gas companies?? performance.  相似文献   

2.
Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.  相似文献   

3.
Data envelopment analysis (DEA) evaluates the performance of decision making units (DMUs). When DEA models are used to calculate efficiency of DMUs, a number of them may have the equal efficiency 1. In order to choose a winner among DEA efficient candidates, some methods have been proposed. But most of these methods are not able to rank non-extreme efficient DMUs. Since, the researches performed about ranking of non-extreme efficient units are very limited, incomplete and with some difficulties, we are going to develop a new method to rank these DMUs in this paper. Therefore, we suppose that DMU o is a non-extreme efficient under evaluating DMU. In continue, by using “Representation Theorem”, DMU o can be represented as a convex combination of extreme efficient DMUs. So, we expect the performance of DMU o be similar to the performance of convex combination of these extreme efficient DMUs. Consequently, the ranking score of DMU o is calculated as a convex combination of ranking scores of these extreme efficient DMUs. So, the rank of this unit will be determined.  相似文献   

4.
Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of decision-making units (DMUs). Since the data of production processes cannot be precisely measured in some cases, the uncertain theory has played an important role in DEA. This paper attempts to extend the traditional DEA models to a fuzzy framework, thus producing a fuzzy DEA model based on credibility measure. Following is a method of ranking all the DMUs. In order to solve the fuzzy model, we have designed the hybrid algorithm combined with fuzzy simulation and genetic algorithm. When the inputs and outputs are all trapezoidal or triangular fuzzy variables, the model can be transformed to linear programming. Finally, a numerical example is presented to illustrate the fuzzy DEA model and the method of ranking all the DMUs.  相似文献   

5.
张琳彦  陈鸣  徐倩  张健 《运筹与管理》2021,30(10):57-63
对所有平行级别上的同等类型的决策单元(DMUs)在绩效表现上的排序一直是管理决策领域研究的重要课题之一。基于数据包络分析的超效率理论和SBM模型,探讨考虑非期望因素的DMUs排序问题。首先构建新的考虑非期望因素的超效率SBM模型,此模型不仅能对有效DMUs排序,而且能够转化成线性规划问题求解,具有有界性、单调性等良好性质。然后将新模型与Tone的SBM模型结合提出了考虑非期望因素的SBM综合排序法,同时给出了相对应的多项式时间算法。该方法以SBM模型作为第一阶段完成非有效DMUs排序,以新模型作为第二阶段完成有效DMUs排序,两阶段综合即完成所有DMUs排序。研究结果表明,综合排序法能够完成对考虑非期望因素的DMUs的排序,为绩效评价的管理实践提供了重要的理论依据。选取中国2010年的30个省份为实证研究对象,应用所提出的综合效率排序法对其环境效率进行排序。分析结果与中国的现实情况的相吻合,表明该排序方法是合理的,能够完成对这些地区的环境效率进行排序,可以为决策者评价环境的绩效表现提供有效的决策支持。  相似文献   

6.
It has been widely recognized that data envelopment analysis (DEA) lacks discrimination power to distinguish between DEA efficient units. This paper proposes a new methodology for ranking decision making units (DMUs). The new methodology ranks DMUs by imposing an appropriate minimum weight restriction on all inputs and outputs, which is decided by a decision maker (DM) or an assessor in terms of the solutions to a series of linear programming (LP) models that are specially constructed to determine a maximin weight for each DEA efficient unit. The DM can decide how many DMUs to be retained as DEA efficient in final efficiency ranking according to the requirement of real applications, which provides flexibility for DEA ranking. Three numerical examples are investigated using the proposed ranking methodology to illustrate its power in discriminating between DMUs, particularly DEA efficient units.  相似文献   

7.
Ranking efficiency based on data envelopment analysis (DEA) results can be used for grouping decision-making units (DMUs). The resulting group membership can be partly related to the environmental characteristics of DMU, which are not used either as input or output. Utilizing the expert knowledge on super efficiency DEA results, we propose a multinomial Dirichlet regression model, which can be used for the purpose of selection of new projects. A case study is presented in the context of ranking analysis of new information technology commercialization projects. It is expected that our proposed approach can complement the DEA ranking results with environmental factors and at the same time it facilitates the prediction of efficiency of new DMUs with only given environmental characteristics.  相似文献   

8.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

9.
《Optimization》2012,61(5):1177-1193
So far numerous models have been proposed for ranking the efficient decision-making units (DMUs) in data envelopment analysis (DEA). But, the most shortcoming of these models is their two-stage orientation. That is, firstly we have to find efficient DMUs and then rank them. Another flaw of some of these models, like AP-model (A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (10) (1993) 1261–1264), is existence of a non-Archimedean number in their objective function. Besides, when there is more than one weak efficient unit (or non-extreme efficient unit) these models could not rank DMUs. In this paper, we employ hyperplanes of the production possibility set (PPS) and propose a new method for complete ranking of DMUs in DEA. The proposed approach is a one stage method which ranks all DMUs (efficient and inefficient). In addition to ranking, the proposed method determines the type of efficiency for each DMU, simultaneously. Numerical examples are given to show applicability of the proposed method.  相似文献   

10.
Since in evaluating by traditional data envelopment analysis (DEA) models many decision making units (DMUs) are classified as efficient, a large number of methods for fully ranking both efficient and inefficient DMUs have been proposed. In this paper a ranking method is suggested which basically differs from previous methods but its models are similar to traditional DEA models such as BCC, additive model, etc. In this ranking method, DMUs are compared against an full-inefficient frontier, which will be defined in this paper. Based on this point of view many models can be designed, and we mention a radial and a slacks-based one out of them. This method can be used to rank all DMUs to get analytic information about the system, and also to rank only efficient DMUs to discriminate between them.  相似文献   

11.
This paper proposes a new super-efficiency model when some factors (inputs/outputs) are negative. The proposed model employs the RDM model (Portela et al, 2004) for ranking decision-making units (DMUs). Our model ranks the DMUs and determines the type of efficiency for each DMU, simultaneously  相似文献   

12.
Cross-efficiency evaluation is an extension of data envelopment analysis (DEA) aimed at ranking decision making units (DMUs) involved in a production process regarding their efficiency. As has been done with other enhancements and extensions of DEA, in this paper we propose a fuzzy approach to the cross-efficiency evaluation. Specifically, we develop a fuzzy cross-efficiency evaluation based on the possibility approach by Lertworasirikul et al. (Fuzzy Sets Syst 139:379–394, 2003a) to fuzzy DEA. Thus, a methodology for ranking DMUs is presented that may be used when data are imprecise, in particular for fuzzy inputs and outputs being normal and convex. We prove some results that allow us to define “consistent” cross-efficiencies. The ranking of DMUs for a given possibility level results from an ordering of cross-efficiency scores, which are real numbers. As in the crisp case, we also develop benevolent and aggressive fuzzy formulations in order to deal with the alternate optima for the weights.  相似文献   

13.
This paper proposes an approach to the cross-efficiency evaluation that considers all the optimal data envelopment analysis (DEA) weights of all the decision-making units (DMUs), thus avoiding the need to make a choice among them according to some alternative secondary goal. To be specific, we develop a couple of models that allow for all the possible weights of all the DMUs simultaneously and yield individual lower and upper bounds for the cross-efficiency scores of the different units. As a result, we have a cross-efficiency interval for the evaluation of each unit. Existing order relations for interval numbers are used to identify dominance relations among DMUs and derive a ranking of units based on the cross-efficiency intervals provided. The approach proposed may also be useful for assessing the stability of the cross-efficiency scores with respect to DEA weights that can be used for their calculation.  相似文献   

14.
朱运霞  昂胜  杨锋 《运筹与管理》2021,30(4):184-189
在数据包络分析(DEA)中,公共权重模型是决策单元效率评价与排序的常用方法之一。与传统DEA模型相比,公共权重模型用一组公共的投入产出权重评价所有决策单元,评价结果往往更具有区分度且更为客观。本文考虑决策单元对排序位置的满意程度,提出了基于最大化最小满意度和最大化平均满意度两类新的公共权重模型。首先,基于随机多准则可接受度分析(SMAA)方法,计算出每个决策单元处于各个排名位置的可接受度;然后,通过逆权重空间分析,分别求得使最小满意度和平均满意度最大化的一组公共权重;最后,利用所求的公共权重,计算各决策单元的效率值及相应的排序。算例分析验证了本文提出的基于SMAA的公共权重模型用于决策单元效率评价与排序的可行性。  相似文献   

15.
The motivation of this study is to propose an equitable method for ranking decision making units (DMUs) based on the data envelopment analysis (DEA) concept. For this purpose, first, the minimum and maximum efficiency values of each DMU are computed under the assumption that the sum of efficiency values of all DMUs is equal to unity. Then, the rank of each DMU is determined in proportion to a combination of its minimum and maximum efficiency values.  相似文献   

16.
数据包络分析SBM超效率模型无可行解问题的两阶段求解法   总被引:1,自引:0,他引:1  
数据包络分析是一种得到广泛应用的基于线性规划的非参数技术效率分析方法,其超效率模型是将被评价DMU从参照集中排除从而使求解得出的效率值可能大于1.超效率模型在文献中用于对有效的DMU进行排序、探测异常值、敏感性和稳定性分析、分析生产率变化的Malmquist模型、二人博弈模型等.超效率模型存在的一个缺陷是在规模收益可变的假设下会出现无可行解的问题.提出了一种基于两阶段求解的SBM超效率模型,并保持了与传统SBM超效率模型的兼容性:在传统的投入(产出)导向SBM超效率模型有可行解时,两阶段法获得的结果与之相同;在传统的投入(产出)导向SBM超效率模型无可行解时,两阶段超效率模型可以得出最接近投入(产出)导向定义的可行解.算例采用实际数据对方法进行了验证.  相似文献   

17.
Super-efficiency in DEA by effectiveness of each unit in society   总被引:1,自引:0,他引:1  
One of the most important topics in management science is determining the efficiency of Decision Making Units (DMUs). The Data Envelopment Analysis (DEA) technique is employed for this purpose. In many DEA models, the best performance of a DMU is indicated by an efficiency score of one. There is often more than one DMU with this efficiency score. To rank and compare efficient units, many methods have been introduced under the name of super-efficiency methods. Among these methods, one can mention Andersen and Petersen’s (1993) [1] super-efficiency model, and the slack-based measure introduced by Tone (2002) [4]. Each of the methods proposed for ranking efficient DMUs has its own advantages and shortcomings. In this paper, we present a super-efficiency method by which units that are more effective and useful in society have better ranks. In fact, in order to determine super-efficiency by this method, the effectiveness of each unit in society is considered rather than the cross-comparison of the units. To do so, we divide the inputs and outputs into two groups, desirable and undesirable, at the discretion of the manager, and assign weights to each input and output. Then we determine the rank of each DMU according to the weights and the desirability of inputs and outputs.  相似文献   

18.
The slacks-based measure (SBM) can incorporate input and output slacks that would otherwise be neglected in the classical DEA model. In parallel, the super-efficiency model for SBM (S-SBM) has been developed for the purpose of ranking SBM efficient decision-making units (DMUs). When implementing SBM in conjunction with S-SBM, however, several issues can arise. First, unlike the standard super-efficiency model, S-SBM can only solve for super-efficiency scores but not SBM scores. Second, the S-SBM model may result in weakly efficient reference points. Third, the S-SBM and SBM scores for certain DMUs may be discontinuous with a perturbation to their inputs and outputs, making it hard to interpret and justify the scores in applications and the efficiency scores may be sensitive to small changes/errors in data. Due to this discontinuity, the S-SBM model may overestimate the super-efficiency score. This paper extends the existing SBM approaches and develops a joint model (J-SBM) that addresses the above issues; namely, the J-SBM model can (1) simultaneously compute SBM scores for inefficient DMUs and super-efficiency for efficient DMUs, (2) guarantee the reference points generated by the joint model are Pareto-efficient, and (3) the J-SBM scores of a firm are continuous in the input and output space. Interestingly, the radial DEA efficiency and super-efficiency scores for a DMU are continuous in the input–output space. The J-SBM model combines the merits of the radial and SBM models (i.e., continuity and Pareto-efficiency).  相似文献   

19.
A characteristic of traditional DEA CCR mode is that it allows DMUs to measure their maximum efficiency score with the most favorable weights. Thus, it would have some shortcomings, for example, the efficiencies of different DMUs obtained by different sets of weights may be unable to be compared and ranked on the same basis. Besides, there are always more than one DMU to be evaluated as efficient because of the flexibility in the selection of weights; it would cause the situation that all DMUs cannot be fully discriminated. With the research gaps, in this paper, we propose two models considering ideal and anti-ideal DMU to generate common weights for performance evaluation and ranking. Finally, two examples of Asian lead frame firms and flexible manufacturing systems are illustrated to examine the validity of the proposed methods.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(15-16):3890-3896
Data envelopment analysis (DEA) is a linear programming technique that is used to measure the relative efficiency of decision-making units (DMUs). Liu et al. (2008) [13] used common weights analysis (CWA) methodology to generate a CSW using linear programming. They classified the DMUs as CWA-efficient and CWA-inefficient DMUs and ranked the DMUs using CWA-ranking rules. The aim of this study is to show that the criteria used by Liu et al. are not theoretically strong enough to discriminate among the CWA-efficient DMUs with equal efficiency. Moreover, there is no guarantee that their proposed model can select one optimal solution from the alternative components. The optimal solution is considered to be the only unique optimal solution. This study shows that the proposal by Liu et al. is not generally correct. The claims made by the authors against the theorem proposed by Liu et al. are fully supported using two counter examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号