首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper, we intend to study the effect of variable mass on the binding energy. In this regard, we apply an analytic expression for position-dependent effective mass in a cubic quantum dot. Then, we obtain the binding energies of a shallow donor in the quantum dot of GaAs/Al x Ga1−x As using a variational procedure within the effective mass approximation. Calculations are presented with a constant effective mass and position-dependent effective mass. It is found that (i) the binding energy decreases as the dot length increases in both the cases of constant and variable masses, (ii) an increase of binding energy is observed when the spatially varying mass is included, and (v) the binding energy shows complicated behavior when the position-dependent mass is included for the small dot size L ≤ 130 ?.  相似文献   

3.
用平面波展开法对GaN/AlxGa1-xN球形量子点中类氢杂质态能级随量子点半径、Al组分以及结合能随Al组分的变化规律进行了详细讨论.计算了量子点内外有效质量差异对杂质态能级和结合能的修正,结果表明对于Al组分较高的GaN/AlxGa1-xN球形量子点,电子有效质量差异对杂质能级和结合能的修正不能忽略.考虑电子有效质量差异后,进一步具体计算了杂质结合能随量子点半 关键词: 球形量子点 平面波展开法 有效质量  相似文献   

4.
L. Shi  Z.W. Yan   《Physics letters. A》2009,373(38):3490-3494
A variational method is used to study the ground state of a bound polaron in a weakly oblate wurtzite GaN/AlxGa1 − xN ellipsoidal quantum dot. The binding energy of the bound polaron is calculated by taking the electron couples with both branches of LO-like and TO-like phonons due to the anisotropic effect into account. The interaction between impurity and phonons has also been considered to obtain the binding energy of a bound polaron. The results show that the binding energy of bound polaron reaches a peak value as the quantum dot radius increases and then diminishes for the finite potential well. We found that the binding energy of bound polaron is reduced by the phonons effect on the impurity states, the contribution of LO-like phonon to the binding energy is dominant, the anisotropic angle and ellipticity influence on the binding energy are small.  相似文献   

5.
In the framework of perturbation theory, a variational method is used to study the ground state of a donor bound exciton in a weakly prolate GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dot under hydrostatic pressure. The analytic expressions for the Hamiltonian of the system have been obtained and the binding energy of the bound exciton is calculated. The results show that the binding energy decreases as the symmetry of the dot shape reduces. The pressure and Al concentration have a considerable influence on the bound exciton. The binding energy increases monotonically as the pressure or Al concentration increases, and the influence of pressure or Al concentration is more pronounced for small quantum dot size.  相似文献   

6.
We present a variational calculation for the ground state of the double donor in a spherical GaAs–Ga1–x Al x As quantum dot. The binding energies for the ionized and neutral centres are calculated for several barrier height values as a function of the radius of the dot. Compared with a square well structure, there is a stronger confinement and a larger binding energy for the double donors in a spherical quantum dot.  相似文献   

7.
The binding energy of a hydrogenic impurity is calculated in a Ga1−xAlxAs/Ga1−yAlyAs corrugated quantum well within the single band effective mass approximation for different Al concentration. Binding energy of the ground state and the excited state of a donor is calculated, with the inclusion of 2D Hartree dielectric screening function. The effect of nonparabolicity of the conduction band is considered through the energy dependent effective mass. The effect of nonparabolicity on spin–orbit interaction energy is found. The oscillator strength coupling between the ground state and the excited state is calculated. The dependence of the donor binding energy on the well width and the Al-concentration is discussed. These results are discussed with the available data in the literature.  相似文献   

8.
We report the effect of intense laser field on donor impurities in a semimagnetic Cd1-xinMnxinTe/Cd1-xoutMnxoutTe quantum dot. The spin polaronic energy of different Mn2+ is evaluated for different dot radii using a mean field theory in the presence of laser field. Magnetization is calculated for various concentrations of Mn2+ ions with different dot sizes. Significant magnetization of Mn spins can be obtained through the formation of polarized exciton magnetic polarons (EMPs). A rapid decrease of the laser dressed donor ionization energy for different values of dot sizes with increasing field intensity is predicted. Also, it is found that the polarization of EMPs increases rapidly at higher excitation energies.  相似文献   

9.
The donor bound spin polaron in a Cd1?xMnxTe quantum dot is investigated theoretically. Spin polaronic shifts are estimated using a mean field theory. Magnetization is calculated for various concentrations of Mn2+ ions with the dot sizes. The lowest binding energies in a diluted magnetic semiconductor of a Cd1?xMnxTe quantum dot are also estimated. Using the effective mass approximation, calculations are presented with and without spatial dependent effective masses. It is found that (i) the lowest binding energy decreases with the dot radius (ii) position dependent mass gives larger binding energy for smaller dots (iii) the ionization energy becomes more when spin interaction energy is included (iv) variation of increase in ionization energy is sharper for smaller dots with increase in concentration and (v) the magnetization of Mn subsystem increases when concentration of Mn2+ ions increases and it has appreciable changes for smaller dots.  相似文献   

10.
Within the framework of effective mass approximation, the binding energy of a hydrogenic donor impurity in zinc-blende GaN/AlxGa1−xN spherical quantum dot (QD) is investigated using the plane wave basis. The results show that the binding energy is highly dependent on impurity position, QD size, Al content and external field. The binding energy is largest when the donor impurity is located at the centre of the QD and the binding energy of impurity is degenerate for symmetrical positions with respect to the centre of QD without the external electric field. The maximum of the donor binding energy is shifted from the centre of QD and the degenerating energy levels for symmetrical positions with respect to the centre of QD are split in the presence of the external electric field. The binding energy is more sensitive to the external electric field for the larger QD and lower Al content. In addition, the Stark shift of the binding energy is also calculated.  相似文献   

11.
The effects of hydrostatic pressure on the exciton ground-state binding energy and the interband emission energy in a GaN/Al x Ga1??? x N quantum dot are investigated. The effects of strain and the internal field due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Numerical calculations are performed using variational procedure within the framework of single-band effective-mass approximation. The dependence of non-linear optical processes on the dot sizes is brought out in the influence of pressure. Pressure-induced optical properties are obtained using the compact density matrix approach. The effects of hydrostatic pressure on the linear, third-order non-linear optical absorption coefficients and the refractive index changes of the exciton as a function of photon energy are calculated. Our results show that the effects of pressure and the geometrical confinement have great influence on the optical properties of GaN/Al x Ga1??? x N dot.  相似文献   

12.
The effect of electric field on the binding energy, interband emission energy and the non-linear optical properties of exciton as a function of dot radius in an InSb/InGaxSb1?x quantum dot are investigated. Numerical calculations are carried out using single band effective mass approximation variationally to compute the exciton binding energy and optical properties are obtained using the compact density matrix approach. The dependence of the nonlinear optical processes on the dot sizes is investigated for various electric field strength. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of electric field induced exciton as a function of photon energy are obtained. It is found that electric field and the geometrical confinement have great influence on the optical properties of dots.  相似文献   

13.
The binding energies of a hydrogenic donor in a GaAs spherical quantum dot in the Ga1−xAlxAs matrix are presented assuming parabolic confinement. Effects of hydrostatic pressure and electric field are discussed on the results obtained using a variational method. Effects of the spatial variation of the dielectric screening and the effective mass mismatch are also investigated. Our results show that (i) the ionization energy decreases with dot size, with the screening function giving uniformly larger values for dots which are less than about 25 nm, (ii) the hydrostatic pressure increases the donor ionization energy such that the variation is larger for a smaller dot, and (iii) the ionization energy decreases in an electric field. All the calculations have been carried out with finite barriers and good agreement is obtained with the results available in the literature in limiting cases.  相似文献   

14.
The significance of heterovalent, substitutional disorder for the distribution of charge carriers in La2−x Sr x CuO4 has been investigated. Disorder is shown to cause strong variations of binding energies of the ions ranging to some eV for Sr contentsx=0.1. Balancing the energy for a hole transport, Cu3++O2−→Cu2++O, and taking binding energy variations into account, the process is realized to become possible without consuming energy for a subset Θ for allx Cu3+ in one formula unit of La2−x Sr x CuO4. The functions Θ(x) are presented for hole transports to apex and in-plane oxygens, respectively. The delocalization of charge carriers is interpreted to be caused by valency disorder on metal lattice sites.  相似文献   

15.
In this paper, we perform a theoretical study, using a variational method, of the binding energy of ground state for hydrogenic impurity in the multi-quantum-dot structure. It is found that the binding energy is not only as a function of the size of the system in the xy plane, but also the barrier thickness and the width of a dot in the z direction. Especially, when the barrier thickness is equal to the width of a dot, there are two peaks in the behavior of the binding energy as a function of the barrier thickness. All these behaviors of the binding energy are determined by the competition between the localization effect of the wave function and the tunneling effect of the wave function due to an increase or decrease in the barrier thickness and the width of a dot. Moreover, we also investigate the behavior of binding energy with different impurity position.  相似文献   

16.
The exciton binding energy and photoluminescence energy transition in a GaAs-Ga1−xAlxAs cylindrical quantum dot are studied with the use of the effective mass approximation and a variational calculation procedure. The influence of these properties on the application of an electric field along the growth direction of the cylinder is particularly considered. It is shown that for zero applied field the binding energy and the photoluminescence energy transition are decreasing functions of the quantum dot radius and height. Given a fixed geometric configuration, both quantities then become decreasing functions of the electric field strength as well.  相似文献   

17.
We report photoluminescence (PL) spectra of InP/InxGa1-xAs/InAs/InP dot-in-a-well structures grown by MOVPE, with different compositions of the ternary layer. Measurements with atomic force microscopy showed that the largest quantum dot (QD) height is obtained when the InAs QDs are grown on the InxGa1-xAs layer with a mismatch of 1000 ppm, and the height decreases as the mismatch departs from this value. PL spectra of the QDs showed an asymmetric band, which involves transitions between dot energy levels and can be deconvoluted into two peaks. The highest energy PL peak of this band was observed for the sample with the QDs grown on top of the lattice-matched InxGa1-xAs layer and it shifted to lower energies for strained samples as the degree of mismatch increased. Theoretical calculations of the energy levels of the entire structure were used to interpret the obtained PL spectra and determine the possible detection tunability range.  相似文献   

18.
Within the framework of effective mass approximation and variational method, the electronic and impurity states in spherical quantum dots with convex bottom in magnetic field are calculated. Calculations are carried out both for on-center and off-center impurities. The impurity binding energy dependencies on radius, measure of convexity of quantum dot bottom, impurity position and magnetic field induction are obtained for the Ga1-xAlxAs/Ga1-yAlyAs system.  相似文献   

19.
A.John Peter  Chang Woo Lee 《中国物理 B》2012,21(8):87302-087302
Cd1-x ZnxS nanocrystals are prepared by a co-precipitation method with different atomic fractions of Zn.The texture,structural transformation and optical properties with increasing x value in Cd1-x ZnxS are studied with scanning electron microscopy,electron diffraction patterning,and absorption spectra respectively.Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically.Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed,with consideration of the internal electric field induced by the spontaneous and piezoelectric polarizations,and thereby the interband emission energy is calculated as a function of the dot radius.The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically.Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm.The X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with an increase in Zn content.The lattice constant gradually decreases as the Zn content increases.The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as the Zn content increases.The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for the CdS film and 3.5 eV for the ZnS film.Our numerical results are in good agreement with the experimental results.  相似文献   

20.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号