首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A study is made of a diode pumped Er3+:YSGG laser crystal operating at 2.797 μm. Lasers were constructed in the bounce geometry, using a transversely cooled 50 at.% Er:YSGG slab and a face-cooled 38 at.% Er:YSGG slab. Results from these are compared with those from a 50 at.% Er3+:YAG laser, also in the bounce geometry. With quasi-continuous wave diode pumping, free-running pulse energies of up to ~55 mJ and a slope efficiency of 20.5% are obtained from 50 at.% Er:YSGG. Better thermal performance is obtained from the face-cooled 38 at.% Er:YSGG slab, allowing average power of ~2 W to be obtained at a repetition rate and pump pulse duration of 140 Hz and 500 μs, respectively. Both Er:YSGG systems perform better than Er:YAG. Numerical modelling of the free-running 50 at.% Er:YSGG and Er:YAG systems is undertaken with good qualitative agreement with experimental results. Electro-optic Q-switching of the 50 at.% Er:YSGG laser using a LiNbO3 crystal yields ~0.5 mJ pulses with ~77 ns duration.  相似文献   

2.
The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10?2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are ?0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.  相似文献   

3.
UTPAL NUNDY  MANOJ KUMAR 《Pramana》2012,79(6):1425-1441
In this paper we propose a scheme to generate tunable 16 μm radiation from CO2 molecules by cascade lasing. The stimulating 9.5 μm radiation is generated internally by the fast rotating mirror Q-switching technique. The optical scheme proposed by us uses an intracavity prism to separate the 9.5 μm and the 16 μm beams. This facilitates independent tuning of the two beams if required. In the present configuration, only the 16 μm cavity is dispersive. The 9.5 μm beam grows spontaneously in a stable semiconfocal resonator. We have developed a theoretical model to simulate the proposed scheme. The model predicts the energy and power of 16 μm radiation. The calculated values are much higher than the previously obtained experimental values. The results point out the feasibility of developing a laser system based on the theoretical design parameters presented in this paper. Such laser systems can find application in uranium isotope separation studies.  相似文献   

4.
This paper demonstrates the use of a zinc oxide (ZnO) thin film in a 1-μm ring laser cavity as a saturable absorber to successfully generate Q-switching pulses. The tunability of the laser pulses is achieved by integrating a tunable bandpass filter (TBPF) in an ytterbium-doped laser cavity that results in 9.4 nm of tuning range, which wavelength is from 1040.70 nm to 1050.1 nm. The peak energy in the pulse which is 1.47 nJ was measured together with a minimum pulse width of 2.4 μs. In addition, the repetition rate increases from 25.77 to 45.94 kHz as the pump power level being increased from 103.1 to 175.1 mW. The results obtained in this experiment demonstrated consistent results and stable throughout the experiment. Therefore, ZnO thin film is considered as a good candidate in 1-μm pulsed laser applications.  相似文献   

5.
A resonant photoacoustic cell capable of detecting the traces of gases at an amplitude-modulation regime is represented. The cell is designed so as to minimize the window background for the cell operation at a selected acoustic resonance. A compact prototype cell (the volume of acoustic cavity of ~0.2 cm3, total cell weight of 3.5 g) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia traces in nitrogen flow with the help of a pigtailed DFB laser diode operated near a wavelength of 1.53 µm. The performance of absorption detection and gas-leak sensing for the prototype operated at the second longitudinal acoustic resonance (the resonance frequency of ~4.38 kHz, Q-factor of ~13.9) is estimated. The noise-equivalent absorption normalized to laser-beam power, and detection bandwidth is ~1.44 × 10?9 cm?1 W Hz?1/2. The amplitude of the window-background signal is equivalent to an absorption coefficient of ~2.82 × 10?7 cm?1.  相似文献   

6.
Q-switching and Q-switched mode-locked Yb:Y2Ca3B4O12 lasers with an acousto-optic switch are demonstrated. In the Q-switching case, an average output power of 530 mW is obtained at the pulse repetition rate of 10.0 kHz under an absorbed pump power of 6.1 W. The minimum pulse width is 79 ns at the repetition rate of 1.7 kHz. The pulse energy and peak energy are calculated to be 231 μJ and 2.03 kW, respectively. In the Q-switched mode-locking case, the average output power of 64 mW with a mode-locked pulse repetition rate of 118 MHz and Q-switched pulse energy of 48 μJ is generated under the absorbed pump power of 6.1 W.  相似文献   

7.
With a plano-concave cavity,diode-pumped continuous-wave(CW) and actively Q-switched Nd:YVO4 laser operating at 1.34 μm is demonstrated.Maximum CW output power of 4.76 W and Q-switched average output power of 2.64 W are obtained with output coupler(transmission T = 3.9%).For the Q-switching operation,the theoretically calculated pulse energy and pulse width,with a pulse repetition frequency(PRF) range of 5-40 kHz,coincide with the experimental results.With a T = 11.9% output coupler,the maximum peak power of 24.3 kW and minimum pulse width of 6.5 ns are obtained when the PRF is 10 kHz.To the best of our knowledge,this is the shortest actively Q-switched pulse duration ever obtained in a 1.3-μm Nd-doped vanadate laser.  相似文献   

8.
In this paper, the design and analysis of an ultracompact coupler based on a hybrid silicon plasmonic waveguide (HSPW) is proposed and its coupling and crosstalk characteristics have been theoretically investigated for the development of optical interconnects that can be realized using well-established complementary metal-oxide-semiconductor-compatible fabrication techniques. To determine the minimum horizontal separation distance and efficient coupling length for the designed coupler, the symmetric and antisymmetric supermodes are obtained and their characteristics are studied at a wavelength of 1.55 μm. Efficient light coupling is exhibited by the HSPW coupler with 75 % of power transfer between the two HSPWs with ultrashort coupling length of 2.14 μm when the separation distance is 50 nm. Further, it is shown that the crosstalk is significantly reduced with the insertion of metallic strip between the two HSPWs for realizing highly dense integrated plasmonic circuits.  相似文献   

9.
Laser surface texturing process involves creation of microfeatures, e.g., tiny dimples, usually distributed in a certain pattern, covering only a fraction of the surface of the material that is being treated. The process offers several advantages for tribological applications, including improved load capacity, wear resistance, lubrication lifetime, and reduced friction coefficient. In the present study, the surface modification of gray cast iron, using millisecond (λ = 1,064 nm), nanosecond (λ = 1,064 nm) and femtosecond (λ = 800 nm) pulse duration laser irradiation, is adopted to establish a particular geometrical pattern with dimple features and dimensions, to improve wear and friction behavior. The effect of various laser processing parameters, including laser pulse energy, pulse duration and processing speed, on the performance characteristics of the laser-treated samples is investigated. The microtextured surfaces were produced on gray cast iron using different millisecond (0.5 ms), nanosecond (40 ns) and femtosecond (120 fs) laser source with the dimple depth between 3 and 15 μm. The coefficient of friction for the untextured surface was ~0.55, millisecond laser textured ~0.31, nanosecond laser textured ~0.02 and femtosecond laser ~0.01, under normal force of 50 N and sliding speed of 63 mm/s. Surface texturing of the gray cast iron surface using femtosecond pulse duration resulted in significant improvement in wear resistance in comparison to the untextured as well as millisecond and nanosecond laser-textured surface.  相似文献   

10.
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is demonstrated for acetylene detection at atmospheric pressure and room temperature with a fiber-coupled distributed feedback (DFB) diode laser operating at ~1.53 μm. An efficient approach for gas concentration calibration is demonstrated. The effect of residual amplitude modulation on the performance of wavelength modulated QEPAS is investigated theoretically and experimentally. With optimized spectrophone parameters and modulation depth, a minimum detectable limit (1σ) of ~2 part-per-million volume (ppmv) was achieved with an 8.44-mW diode laser, which corresponds to a normalized noise equivalent coefficient (1σ) of 6.16 × 10?8 cm?1 W/Hz1/2.  相似文献   

11.
Active mode-locking of long-cavity all-fiber ring laser based on broad bandwidth in-fiber acousto-optic modulator (AOM) is reported. The proposed AOM combines the advantages of intermodal coupling induced by standing flexural acoustic waves in a double-ended tapered fiber. We focus our attention on the effects of large tapered transitions to improve the bandwidth modulation. Our approach permits the implementation of broad modulation bandwidth (13 nm), high modulation depth (50 %), and low optical loss (1.1 dB) in an 80-μm configuration. The effects of the AOM in the laser performance are also investigated. Transform-limit optical pulses of 25 ps temporal width and 2.7 W peak power were obtained at 2.46 MHz repetition rate.  相似文献   

12.
Passive Q-switching of a diode-pumped Nd : YVO4 laser was demonstrated using GaAs as an output coupler and as a saturable absorber. When pumped with a 3-W diode laser at 809 nm, the highly compact laser produced 12-μJ pulses of 2.2 ns in duration at 1.064 μm in a single transverse mode, corresponding to a peak power of 5.6 kW.  相似文献   

13.
We present two laser ultrasonic receivers based on organic photorefractive polymer composites with 2-[4-bis(2-methoxyethyl)aminobenzylidene]malononitrile (AODCST) or 2-dicyanomethylen-3-cyano-5,5-dimethyl-4-(4′-dihexylaminophenyl)-2,5-dihydrofuran nonlinear optical chromophores. Experimental results show sensitivities of the ultrasonic receivers of ~9.5 × 10?8 nm (W/Hz)0.5 for both composites, and a faster response time (~60 ms) for the AODCST-based laser ultrasonic receiver. We show that such LUS detectors are highly suitable for contactless thickness measurements of aluminum, steel sheets and defect detection with an accuracy of 100 μm.  相似文献   

14.
We report a high-efficiency, single-mode, all-fiber pulsed laser system built in a master oscillator power amplifier format, operating in the eye-safe (λ ~1,549 nm) spectral range, providing over 1.5 W of average output power with up to 51 dB of total signal gain. It comprises the flexibility of smooth pulse duration control from single ns to 260 ns with independently tunable repetition rate ranging from 40 kHz to 1 MHz. Pulses as short as 4 ns with up to 20 μJ energy and corresponding peak power of 5 kW are demonstrated. The laser system delivered a nearly diffraction-limited beam with M 2 ~1.  相似文献   

15.
We obtained a frequency tunable, low-coherence, picosecond, terahertz (THz) output with a high repetition rate from a picosecond Nd:YVO4 bounce laser in combination with tandem periodically poled stoichiometric lithium tantalate and 4′-dimethylamino-N-methyl-4-stilbazolium tosylate crystals. The frequency of the THz output was tunable in the range 2.1–7.1 THz with a linewidth of ~3.5 THz at 2.2 THz. The THz output had a maximum peak power of ~180 mW and an average power of ~0.65 μW at 3.9 THz. This system has the potential to realize ultra-high speed, THz coherence tomography.  相似文献   

16.
低温GaAs被动调Q锁模Nd:Gd0.42 Y0.58VO4 混晶激光器特性研究   总被引:1,自引:0,他引:1  
采用低温生长GaAs晶体作为被动饱和吸收体兼输出镜,实现了Nd:Gd0.42Y0.58VO4混晶激光器的调Q锁模运转.研究了Nd:Gd0.42Y0.588VO4激光器的基频运转特性.在输出镜透射率T=10%、腔长L=40 mm的情况下,当抽运功率为8.6 W时,获得激光输出功率3.78 W,光-光转换效率为43.9%.并测量了Nd:Gd0.42Y0.58VO4混晶被动调Q激光器的输出特性.实验结果表明激光器调Q运转阈值为2 W,当抽运功率为3.7 W时,激光器出现调Q锁模行为;当抽运功率为8.6 W时,激光器调Q锁模深度达70%以上,对应的脉冲包络重复频率为670 kHz,半峰全宽为180 ns,平均输出功率为1.35 W,光-光转换效率为15.7%.  相似文献   

17.
An experimental investigation on the characteristics of laser and current pulses in a He–SrCl2 vapor laser is carried out. The temporal dependences of the discharge current pulse on the laser pulses at the 1.09 μm, ~3 μm and 6.45 μm lines in strontium atoms and ions are measured and analyzed under different laser output powers. It is found that all laser pulses appear at the falling edge of the current pulse and shift forward to the current pulse with increasing laser output power.  相似文献   

18.
Within the scope of the present study, the three-dimensional (3D) samples from poly(vinylidene fluoride) plus lead zirconate titanate (PVDF+PZT) and silica+PZT powdered compositions were successfully prepared by the selective laser sintering (SLS) process. The optimal regimes for the layer-by-layer fabrication of 3D samples were determined both for wavelengths of 10.6 and 1.06 μm. The sample structure and element composition were characterized by the use of the scanning electronic microscope in combination with the energy dispersive X-ray spectrometry (EDX) analysis. It was shown that after the SLS process, the initial perovskite phase did not undergo any significant structural changes. The results of characterization tests testified to the decease of the sample density and opened porosity by the 2–5 times as compared to the solid PZT that seems to be useful for acoustic applications. A comparative estimate of the PVDF destruction process was fulfilled for the laser wavelength of 10.6 and 1.06 μm, by using infrared spectroscopy, photo calorimetrical and chromatography measurements, sol-gel and viscosity analysis. It was found that the structuring velocity had diametrically opposite behavior for these wavelengths: it grows with the laser power increase for λ = 10.6 μm and, vice versa, it falls for λ = 1.06 μm.  相似文献   

19.
C. Xu  G. Li  S. Zhao  X. Li  K. Cheng  G. Zhang  T. Li 《Laser Physics》2010,20(6):1335-1340
We have realized, for the first time to our knowledge, the passive Q-switching operation of an LD-pumped Nd:GdVO4 laser at 1342 nm with V:YAG saturable absorber of initial transmission as high as 96%. This laser is investigated under different transmissions of the output coupler. The dependences of average output power, pulse width, pulse repetition rate, single-pulse energy and peak power on incident pump power are also measured. The shortest pulse width of 80 ns, the maximum single-pulse energy of 19.5 μJ and the highest peak power of 244 W are obtained with the output coupler of T = 15% and the pump power of 7.93 W. We find a special experimental phenomenon that the pulse repetition rate begins to drop after reaching the peak with the increase of the pump power. This phenomenon is analyzed and the theoretical calculations are consistent with the experimental results.  相似文献   

20.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号