首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱亚彬  胡伟  纳杰  何帆  周岳亮  陈聪 《中国物理 B》2011,20(4):47301-047301
Polycrystalline ZnO and ITO films on SiO2 substrates are prepared by radio frequency (RF) reactive magnetron sputtering. Schottky contacts are fabricated on ZnO films by spin coating with a high conducting polymer, poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as the metal electrodes. The current-voltage measurements for samples on unannealed ZnO films exhibit rectifying behaviours with a barrier height of 0.72 eV (n=1.93). The current for the sample is improved by two orders of magnitude at 1 V after annealing ZnO film at 850 ℃, whose barrier height is 0.75 eV with an ideality factor of 1.12. X-ray diffraction, atomic force microscopy and scanning electron microscopy are used to study the properties of the PEDOT:PSS/ZnO/ITO/SiO2. The results are useful for applications such as metal-semiconductor field-effect transistors and UV photodetectors.  相似文献   

2.
We show that nanosecond pulsed laser interference can be used to structure surfaces on a nanoscale. With this method, we are able to create hollow structures on various thin films like Ta, Ni, Au, Cu, Co, and NiTi. We find that the structuring mechanism is related to the mechanical effect of thermal expansion upon melting. To corroborate this model, we study materials with an abnormal behavior at the melting point like Si, Ge, or Bi, as they contract upon melting.  相似文献   

3.
Niobium carbide thin films were prepared by pulsed laser ablation of a stoichiometric NbC target. XeCl (308 nm, 30 ns) and Nd:YAG (266 nm, 5 ns) lasers operating at a repetition rate of 10 Hz were used. Films were deposited on Si (100) substrates at room temperature either in vacuum or in an argon atmosphere (2᎒-1 mbar). Different laser fluences (2, 4 and 6 J/cm2) and different numbers of pulses (1᎒4, 2᎒4 and 4᎒4) were tested. For the first time, NbC films were prepared through a clean procedure without the addition of a hydrocarbon atmosphere. The phase constitution of the films, unit cell size, mean crystallite dimensions and preferred orientation are determined as a function of deposition conditions by X-ray diffraction. Complementary morphological and structural analysis of the films were performed by scanning electron microscopy, atomic force microscopy and Rutherford backscattering spectroscopy.  相似文献   

4.
ZrC thin films were grown on (0 0 1)Si, (1 1 1)Si and (0 0 0 1)sapphire substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction, X-ray reflectivity and Auger electron spectroscopy investigations were used to characterize the structure and composition of the deposited films. It has been found that films grown at temperatures higher than 700 °C under very low water vapor pressures were highly textured. Films deposited on (0 0 1)Si grew with the (0 0 1) axis perpendicular to the substrate, while those deposited on (1 1 1)Si and (0 0 0 1)sapphire grew with the (1 1 1) axis perpendicular to the substrate. Pole figures investigations showed that films were epitaxial, with in-plane axis aligned to those of the substrate.  相似文献   

5.
Nanostructured thin films were deposited by excimer laser ablation of silver targets in controlled atmospheres of He and Ar. The film structural properties were investigated by means of scanning electron microscope and transmission electron microscope imaging. The film growth mechanism was identified as the result of coalescence of nanometric clusters formed during plume flight. Cluster formation involves plume confinement as a consequence of the increased collisional rate among plasma species. Fast photography imaging of the laser-generated silver plasma allowed to identify plasma confinement, shock wave formation and plasma stopping.  相似文献   

6.
Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT) thin films grown by pulsed laser deposition have been investigated by X-ray diffraction, scanning electron microscopy, and dielectric spectroscopy in order to clarify the role of substrate temperature on crystalline structure, grain morphology, and dielectric properties. We have shown that the structural and dielectric properties of NBT-BT thin films with composition at morphotropic phase boundary (6% BT) critically depend on the substrate temperature: small variations of this parameter induce structural changes, shifting the morphotropic phase boundary toward tetragonal or rhombohedral side. Higher deposition temperature (1000 K) favor the formation of rhombohedral phase, films deposited at 923 K and 973 K have tetragonal symmetry at room temperature. Grains morphology depends also on the deposition temperature. Atomic force micrographs show grains with square or rectangular shape in a compact structure for films grown at lower temperatures, while grains with triangular shape in a porous structure are observed for films grown at 1000 K. Dielectric spectroscopy measurements evidenced the phase transition between ferroelectric and antiferroelectric phase at 370 K. Films grown at 1000 K shown low electrical resistivity due to their porous structure. High dielectric constant values (about 800 at room temperature and 2700 at 570 K) have been obtained for films grown at temperatures up to 973 K.  相似文献   

7.
Nanostructures formed by Au nanoparticles on ZnO thin film surface are of interest for applications which include medical implants, gas-sensors, and catalytic systems. A frequency tripled Nd:YAG laser (λ = 355 nm, τFWHM ∼ 10 ns) was used for the successive irradiation of the Zn and Au targets. The ZnO films were synthesized in 20 Pa oxygen pressure while the subsequent Au coverage was grown in vacuum. The obtained structures surface morphology, crystalline quality, and chemical composition depth profile were investigated by acoustic (dynamic) mode atomic force microscopy, X-ray diffraction, and wavelength dispersive X-ray spectroscopy. The surface is characterized by a granular morphology, with average grain diameters of a few tens of nanometers. The surface roughness decreases with the increase of the number of laser pulses applied for the irradiation of the Au target. The Au coverage reveals a predominant (1 1 1) texture, whereas the underlying ZnO films are c-axis oriented. A linear dependence was established between the thickness of the Au coverage and the number of laser pulses applied for the irradiation of the Au target.  相似文献   

8.
An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Sur- face oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure.  相似文献   

9.
Zhu L  Dai Q  Hu ZF  Zhang XQ  Wang YS 《Optics letters》2011,36(10):1821-1823
We have fabricated an organic deep ultraviolet photodetector (PD) using PEDOT:PSS (PH 1000) as a transparent anode. NPB and PBD were employed as electron donor and acceptor, respectively. The PD exhibits a dark current of 0.0829 μA/cm(2) and a photocurrent of 85.3 μA/cm(2) at -12 V under 280 nm light illumination with an intensity of 0.488 mW/cm(2). A high response at 248-370 nm with its peak of 0.18 A/W at 280 nm and a detectivity of 1.1×10(12) cm Hz(1/2) W(-1) were achieved. The more detailed mechanism of harvesting high performance and the dependence of photocurrent density on illumination intensity are also discussed.  相似文献   

10.
The growth of ZnO thin films on sapphire substrate using the femtosecond PLD technique is reported. The effect of substrate temperature and oxygen pressure on the structural properties of the films was studied. Highly c-axis oriented ZnO films can be grown on sapphire substrates under vacuum conditions using the femtosecond PLD process. There is an optimum substrate temperature for the pulsed laser deposition of ZnO film that enhances the thermodynamic stability and allows the formation of well-crystallized thin films. The crystal quality of the films can be further improved by increasing the deposition time and introducing oxygen during the pulsed laser deposition process.  相似文献   

11.
Zirconium(Zr) thin films deposited on Si(100) by pulsed laser deposition(PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction(XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser–plasma interaction, the deposition rate significantly decreases from 0.0431 /pulse at 2 Hz to 0.0189 /pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy(AFM). The root mean square(RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate.The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.  相似文献   

12.
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.  相似文献   

13.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

14.
Maskless laser patterning of indium tin oxide (ITO) thin films was studied by the use of a diode-pumped Q-switched Nd:YLF laser. The ITO films were sputter-deposited either on lime glass, the standard substrate material for flat panel display applications, or fused quartz so that the efficiency of laser patterning as a function of substrate absorption could be studied. The laser wavelength was varied among infrared (5=1047 nm), visible (5=523 nm), and ultraviolet (5=349 nm and 5=262 nm). It is observed that strong light absorption by the substrate is a crucial requirement for a residue-free patterning of the ITO film. Observations and numerical calculations of the laser-induced surface temperature indicate that material removal occurs via thermal vaporization and that other mechanisms such as photochemical decomposition or spallation can be neglected.  相似文献   

15.
Transparent conducting ZnMgO:Ga films were deposited on flexible PET substrates by pulsed laser deposition (PLD). Effects of deposition pressure and time on the structural, electrical and optical properties of ZnMgO:Ga films were investigated. The films showed a low resistivity about 7.68 × 10−4 Ω cm when deposited at the pressure of 0.03 Pa for 40 min. All the films exhibited a high transmittance over 80% in the visible and near-ultraviolet region. The band gap of as-grown films was about 3.50 eV.  相似文献   

16.
Poly(9,9-dioctylfluorene) (PF8) thin films have been deposited by matrix-assisted pulsed laser evaporation (MAPLE) using a KrF excimer laser. The influence of the laser fluence (50-500 mJ/cm2) and the nature of the solvent (chloroform, toluene, tetrahydrofuran) on the films properties have been studied. The chemical composition of the deposited films was investigated by Fourier transform infrared (FTIR) spectroscopy and compared with the one of spin coated films. To investigate the effect of the deposition parameters on the optical properties of the films, photoluminescence (PL) measurements were performed. Poor structural and optical properties were observed for films deposited starting from chloroform solutions. When using toluene as solvent, the spectra characteristics improved with increasing laser fluence, while wide PL spectra were observed. The characteristic emission bands of the PF8 polymer were nicely detected for films deposited starting from a tetrahydrofuran (THF) solution. Moreover, in this last case, the PF8 structure is preserved at high laser fluences, too.  相似文献   

17.
Microstructural properties of nano-ionic thin films of gadolinia-doped ceria (GDC) prepared by pulsed laser ablation from sintered targets of gadolinia (5–20 mol%) doped ceria are investigated. The ionic conductivity measurements of the sintered pellets showed a decrease in the activation energy from 1.1 to 0.65 eV for 5 and 30 mol% gadolinia-doped ceria, respectively. The microstructural properties of the GDC films as a function of substrate temperature, oxygen partial pressure, and laser energy show that the films are polycrystalline in the entire range of substrate temperature. The grain size is found to increase with increasing temperature up to 873 K. Further improved crystallinity is noticed for the films grown with oxygen partial pressure of 0.1–0.2 mbar. X-ray diffraction and transmission electron microscopy (TEM) reveal nanocrystalline grains with textured growth along <111> orientation in these films at low substrate temperature and at lower oxygen partial pressure. TEM study shows a uniform distribution of nanocrystal of 8–10 nm for energies ≤200 mJ/pulse, and nanocrystals embedded in a large crystalline matrix of doped ceria for energies in the range 400–600 mJ/pulse. Raman spectroscopy also confirms the defects in these films. The study also reveals that the substrate temperature and oxygen partial pressure could influence preferred orientation, while the laser energy could significantly influence defect concentration in these films. Invited paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

18.
Thin films of zinc oxide have been deposited by reactive pulsed laser ablation of Zn and ZnO targets in presence of a radio frequency (RF) generated oxygen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration, on Si (1 0 0). Thin films have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectroscopy. A comparison among conventional PLD and reactive RF plasma-assisted PLD has been performed.  相似文献   

19.
Chemical composition of ZrC thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
ZrC films were grown on (1 0 0) Si substrates by the pulsed laser deposition (PLD) technique using a KrF excimer laser working at 40 Hz. The nominal substrate temperature during depositions was set at 300 °C and the cooling rate was 5 °C/min. X-ray diffraction investigations showed that films deposited under residual vacuum or under 2 × 10−3 Pa of CH4 atmosphere were crystalline, exhibiting a (2 0 0)-axis texture, while those deposited under 2 × 10−2 Pa of CH4 atmosphere were found to be equiaxed and with smaller grain size. The surface elemental composition of as-deposited films, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed the usual high oxygen contamination of carbides. Once the topmost 2-4 nm region was removed, the oxygen concentration rapidly decreased, down to around 3-8% only in bulk. Simulations of the X-ray reflectivity (XRR) curves indicated a smooth surface morphology, with roughness values below 1 nm (rms) and films density values of around 6.30-6.45 g/cm3, very close to the bulk density. The growth rate, estimated from thickness measurements by XRR was around 8.25 nm/min. Nanoindentation results showed for the best quality ZrC films a hardness of 27.6 GPa and a reduced modulus of 228 GPa.  相似文献   

20.
Amorphous carbon is an interesting material and its properties can be varied by tuning its diamond-like (sp3) fractions. The diamond-like fractions in an amorphous carbon films depends on the kinetic energy of the deposited carbon ions. Porous amorphous carbon thin films were deposited onto silicon substrates at room temperature in a vacuum chamber by Glancing Angle Pulsed Laser Deposition (GAPLD). Krypton fluoride (248 nm) laser pulses with duration of 15 ns and intensities of 1-20 GW/cm2 were used. In GAPLD, the angles between the substrate normal and the trajectory of the incident deposition flux are set to be almost 90°. Porous thin films consisting of carbon nanowires with diameters less than 100 nm were formed due to a self-shadowing effect. The kinetic energies of the deposited ions, the deposition rate of the films and the size of the nanowires were investigated. The sp3 fraction of the porous carbon films produced at intensity around 20 GW/cm2 were estimated from their Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号