首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
′ and NBOH). Samples with high OH content exhibit gradual recovery from the absorption band within several minutes after exposure to the KrF laser radiation. The formation of the KrF laser-induced 210 nm absorption band depends on the fictive temperature and on the OH content. Low fictive temperature, as a measure for the number of intrinsic defects, retards E generation at the beginning of intense KrF excimer laser irradiation when the majority of defects are generated from precursor defects. However, for longer irradiation periods with pulse numbers of the order of 105 pulses, a high OH content is the beneficial parameter. The accompanying atomic hydrogen is essential for the suppression of the 210 nm absorption band. This happens by transformation of the E centers into Si-H defects. In contrast to a generally held view, annealing (decreasing of the fictive temperature) of fused silica does not always reduce UV induced defect generation. For example, annealing of the samples in an argon atmosphere causes a significantly higher 210 nm absorption increase during KrF excimer laser irradiation (240000 pulses) compared to nonannealed samples. Two spectroscopic methods to determine the OH content of fused silica were applied: Raman and infrared spectroscopy, which in this work lead to differing results. The energetics of the 210 nm absorption band generation and bleaching is summarized by a diagram explaining the interaction of the 248 nm laser radiation with fused silica. Received: 2 June 1997/Accepted: 13 June 1997  相似文献   

2.
Silicon doping into GaAs has been performed with the combination of pulsed XeCl excimer laser (wavelength: 308 nm) and silane gas (SiH4). Sheet resistances and depth profiles of the Si-doped GaAs as the functions of laser fluence, the number of laser pulses and gas pressure have been measured in order to make clear the relation between properties of doped GaAs and irradiation conditions. The secondary ion mass spectroscopy (SIMS) has revealed that the depth of Si in GaAs is limited in such a very shallow region (30–110 nm) that might be controlled easily by irradiation conditions. The efficiency for carrier generation of Si in GaAs with laser fluence is discussed.  相似文献   

3.
Pulsed UV laser drilling can be applied to fabricate vertical electrical interconnects (vias) for AlGaN/GaN high electron mobility transistor devices on single-crystalline silicon carbide (SiC) substrate. Through-wafer micro holes with a diameter of 50-100 μm were formed in 400 μm thick bulk 4H-SiC by a frequency-tripled solid-state laser (355 nm) with a pulse width of ≤30 ns and a focal spot size of ∼15 μm. The impact of laser machining on the material system in the vicinity of micro holes was investigated by means of micro-Raman spectroscopy and transmission electron microscopy. After removing the loosely deposited debris by etching in buffered hydrofluoric acid, a layer of <4 μm resolidified material remains at the side walls of the holes. The thickness of the resolidified layer depends on the vertical distance to the hole entry as observed by scanning electron microscopy. Micro-Raman spectra indicate a change of internal strain due to laser drilling and evidence the formation of nanocrystalline silicon (Si). Microstructure analysis of the vias’ side walls using cross sectional TEM reveals altered degree of crystallinity in SiC. Layers of heavily disturbed SiC, and nanocrystalline Si are formed by laser irradiation. The layers are separated by 50-100 nm thick interface regions. No evidence of extended defects, micro cracking or crystal damage was found beneath the resolidified layer. The precision of UV laser micro ablation of SiC using nanosecond pulses is not limited by laser-induced extended crystal defects.  相似文献   

4.
Ligang Song 《中国物理 B》2021,30(8):86103-086103
Fe-Cr ferritic/martensitic (F/M) steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies. In this study, a widely-used ferritic/martensitic steel, T91 steel, was irradiated by 196-MeV Kr+ ions at 550 ℃. To reveal the irradiation mechanism, the microstructure evolution of irradiated T91 steel was studied in details by transmission electron microscope (TEM). With increasing dose, the defects gradually changed from black dots to dislocation loops, and further to form dislocation walls near grain boundaries due to the production of a large number of dislocations. When many dislocation loops of primary a0/2<111> type with high migration interacted with other defects or carbon atoms, it led to the production of dislocation segments and other dislocation loops of a0<100> type. Lots of defects accumulated near grain boundaries in the irradiated area, especially in the high-dose area. The grain boundaries of martensite laths acted as important sinks of irradiation defects in T91. Elevated temperature facilitated the migration of defects, leading to the accumulation of defects near the grain boundaries of martensite laths.  相似文献   

5.
A novel method for producing rewritable optical memory with ultra-high storage density and ultra-high recording and readout speed is presented. A 120 fs, 800 nm, 1 kHz laser focused by an objective lens is used to produce recording bits in glass with high transmittance contrast. These recording bits can be erased by heat-treatment. The mechanism has been discussed by means of the absorption and electron spin resonance(ESR) spectra of silicate glasses before and after irradiation by the laser. The absorption of glasses increases greatly after irradiation because of color-center generation through multi-photon absorption. ESR spectra shows that the color-center induced in the glass are hole-trapped defects. The color-center disappears when the glass heated because the holes and electrons at traps are released by thermal stimulation and recombine again.  相似文献   

6.
The effects of heavy-ion irradiation on dislocation processes in stainless steels were investigated using in situ irradiation and deformation in the transmission electron microscope as well as post mortem electron tomography to retrieve information on the three-dimensional dislocation state. Irradiation-induced defects were found to pose a strong collective barrier to dislocation motion, leading to dislocation pileups forming in grain interiors and at grain boundaries. The passage of multiple dislocations along the same slip plane removes the irradiation defects and leads to the eventual formation of a defect-free channel. These channels are composed of densely tangled dislocation networks which line the channel-matrix walls as well as residual dislocation debris in the channel interiors. The structures of the dislocation tangles were found to be similar to those encountered in later stages of deformation in unirradiated materials, with the exception that they developed earlier in the deformation process and were confined to the defect free channels. Also, defect free channels were found to widen through both source widening as well as complex cross-slip mechanisms.  相似文献   

7.
1 Introduction  Withthedevelopmentofmultimediaandelectroniccommunicationnetworks,therequirementofdatastorageisincreasingrapidly .Recentyears,intenseresearchactivitiesareundertakingallovertheworldtofindalternatemethodsandrecordingmediatomeettheneedofdat…  相似文献   

8.
Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX).  相似文献   

9.
The mechanical behavior of solid layers subjected to laser irradiation is investigated by a dynamical model that is based on coupled evolution equations for the elastic displacement of the medium and lattice defect-density fields. The evolution of defect-density is governed by the (i) generation of defects by irradiation, (ii) their diffusion and recombination and (iii) diffusion induced by strain field. The strain field associated with lattice dilatation due to atomic defects is shown to couple with deformation fields of the layer. Frequency equations corresponding to the symmetric and anti-symmetric modes of vibration of the layer are obtained. It is found that coupling between diffusion and strain fields cause dispersion of the general waveform. Explicit expressions are defined for the wave velocity, and the attenuation (amplification) coefficients which characterize these waves.  相似文献   

10.
Indium arsenic (InAs) nanowires were irradiated with a focused laser beam, followed by in situ Raman spectroscopy mapping and scanning electron microscopy imaging to investigate the changes of the nanowires due to laser irradiation. It was found that laser irradiation with the power intensity above a certain threshold causes arsenic (As) atoms to disintegrate from InAs and accumulate on the surface of the nanowire; the accumulated As atoms evaporate under the continued laser irradiation. This process reduces the As content in the nanowire. The reduction of As content, in turn, lowers the melting temperature of the nanowire locally and facilitates laser ablation, which eventually fractures the nanowire. The laser irradiation induced changes of the InAs nanowires are attributed to the local temperature rises due to the irradiation, as confirmed by the Raman peak shifts. The results from this work show that in situ Raman spectroscopy mapping can provide detailed information about the entire process of laser-induced change and ablation of InAs nanowires and has the potential to become a powerful tool for the characterization of laser modification of nanowires and other nanometer-sized objects.  相似文献   

11.
The oxidation of ion implanted silicon induced by a repetitive excimer laser working in liquid phase regime has been monitored by a simple in situ technique. It consists to follow the optical reflectivity at the wavelength 633 nm of the silicon samples under irradiation. The influence of implantation and laser irradiation conditions on the oxidation process has been investigated by this technique. The results obtained have been compared using infrared absorption data. The role of the Si/SiO2 interface roughness on the oxide film quality has been studied.  相似文献   

12.
It is known that deep ultraviolet (UV) radiation induces a refractive index increase in the surface layer of polymethylmethacrylate (PMMA) samples. This effect can be used for the fabrication of integrated optical waveguides. PMMA is of considerable interest for bio and chemical sensing applications because it is biocompatible and can be micromachined by several methods, e.g. structuring by photolithography, ablation and hot embossing. In the presented work direct UV irradiation of a common PMMA substrate by a krypton fluoride excimer laser beam through a contact mask has been used to write integrated optical Mach-Zehnder interferometers (MZI). MZI are used as sensitive bio and chemical sensors. The aim was to determine contact mask design and laser irradiation parameters for fabricating single-mode MZI for the infrared region from 1.30 μm to 1.62 μm. Straight and curved waveguides have been generated and characterized to determine the optical losses. The generation of channel waveguide structures has been optimized by a two step irradiation process to minimize the lithographic writing time and optical loss. By flood exposure to UV laser radiation in the first step the optical absorption of PMMA can be increased in the irradiated region. The required refractive index profile is then achieved with a second lithographic irradiation. The spectral behaviour of an unbalanced, integrated optical MZI fabricated by this excimer laser based contact mask method is shown for the first time. Further the optical intensity at the output port of a MZI has been measured while the optical path length difference was tuned by creating a temperature difference between the two arms of the MZI.  相似文献   

13.
The effect of low irradiation doses on the threshold behavior of the effective permittivity of crystals of the triglycine sulfate group in an ac electric field has been studied. It has been shown that the effect of radiation-induced radicals on the domain structure of the studied crystals is not identical and is controlled by the nature of the previously introduced defects. Interaction energies of domain walls with defects have been calculated.  相似文献   

14.
A combined effect of laser treatment and introduced fine-grained weakly magnetic impurity Mg–P–B defects on the magnetic structure and physical properties of anisotropic electrotechnical materials has been investigated. Specific features of changes in the type and behavior of the magnetic domain structure under different types of deformation (laser irradiation, scratching, and introduction of interstitial defects) have been revealed. The physical basis and optimum conditions of increase in thermal stability of local laser treatment zones in soft magnetic alloys have been determined. The obtained results open the prospects of decreasing magnetic losses in soft magnetic alloys and producing magnetic materials with a high level of physical and mechanical properties that are more resistant to operating conditions.  相似文献   

15.
用Nd-YAG脉冲激光对n型硅掺铟,形成外p+n结。利用二次离子质谱仪(SIMS)、卢瑟福背散射(RBS)等方法,研究了硅内铟的分布,并分析了用20ns脉冲激光硅掺铟的物理过程,发现当激光能量密度足够大时,在硅表面层存在硅-铟混合熔体和液态硅两部分。当激光能量密度较小时,硅表面层仅有液态硅层、用I-V,C-V和深能级瞬态谱(DLTS)等方法研究了p+n结的电学性质,发现在p+n结的n区存在两个缺陷。一个能通过快速热退火,在600℃,60s条件下消失,研究表明可能为空位与杂质的复合体。另一个通过快速热退火不能消失,可能与位错有关。 关键词:  相似文献   

16.
A numerical model of trapping of the radiation-induced charge in the bulk and on the surface of the oxide layer of a MOS transistor has been developed. The model takes into account the generation of point defects under fast neutron irradiation. The volume and surface charges obtained by the numerical modeling have been used to calculate the drain—gate characteristic of the MOS transistor exposed to neutron irradiation in different doses and accompanying high-energy gamma-ray irradiation. To model the effect of neutron irradiation, different methods for estimating the rate of point defect generation in a two-component material (SiO2) have been developed. The simulated drain—gate characteristic is shown to agree well with the experimental data obtained at the concentration of hole traps and their capture cross sections lying within the published data for an unirradiated device after exposure to gamma rays from a 60Co gamma source and after irradiation with fast neutrons with an average energy of ∼1 MeV and accompanying gamma rays using a pool-type reactor.  相似文献   

17.
In this paper we present the fundamental mechanism which we hold responsible for generation of high frequency Rayleigh waves by picosecond laser pulses on a single crystal surface of Silicon. These Rayleigh waves have been recorded as ripples frozen out on the surface of the crystal upon irradiation with a focused cw mode-locked laser.  相似文献   

18.
We report the fabrication of graphitic microstructures in the bulk of chemical vapor deposited (CVD) diamond using 120-fs laser pulses at 800-nm wavelength. The nature of the laser-modified region and generation of mechanical stresses in the surrounding diamond is studied with Raman spectroscopy. A spontaneous growth of the laser-modified region from the focal plane towards the laser has been visualized in the process of multipulse irradiation with different pulse energies. The formation of discrete or continuous graphitized structures is revealed depending on the varied local laser intensity. The physical processes governing the appearance of separate graphitic globules and continuous extension of the graphitized region are discussed. Controlling the laser irradiation conditions permits us to fabricate graphitic wires with typical length of 150 μm and diameter of 1.5 μm. The longer, 300-ps pulses, as applied to laser microstructuring of the CVD diamond bulk, are found to be inappropriate due to the stronger influence of structural defects on the damage threshold, the noticeable fluctuation of the structure diameter over the length and the pronounced cracking of the surrounding diamond. PACS 42.62.-b; 61.80.Ba  相似文献   

19.
The effect of laser irradiation on the optical properties of thermally evaporated Se100?x Te x (x=8, 12, 16) chalcogenide thin films has been studied. The result shows that the irradiation causes a shift in the optical gap. The results have been analyzed on the basis of laser irradiation-induced defects in the film. The width of the tail of localized state in the band gap has been evaluated using the Urbach edge method. As the irradiation time increases, the values of the optical energy gap for all compositions decrease, while tail energy width increases. It is also observed that the optical energy gap decreases with increasing Te content in the alloy. These changes are a consequence of an increment in disorder produced by laser irradiation in the amorphous structure of thin film.  相似文献   

20.
Nature of the defects in solid samples generated under the surface irradiation by a pulse of a CO2-laser is investigated by the method of acousti©emission analysis. The laser pulse energy of 1.5 J was insufficient for destroying the sample. The samples were rods made from crystal (aluminum, copper) or amorphous (glass) materials. Acoustic emission signals from a rod face were studied which arise under the action of the laser radiation focused onto the opposite face of the rod. Analysis of data obtained shows that local structural changes arise in all the samples investigated. Defects in the form of microscopic cracks have been generated, and in the case of glass (the most fragile material), the cracks existing prior to irradiation have been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号