首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the condensed phase, of nine linear-alkyl substituted thiophenes, six in position 2- and three in position 3-, at T=298.15 K, were derived from the standard massic energies of combustion, in oxygen, to yield CO2(g) and H2SO4·115H2O(aq), measured by rotating-bomb combustion calorimetry. The standard molar enthalpies of vaporization of these compounds were measured by high temperature Calvet Microcalorimetry, so their standard molar enthalpies of formation, in the gaseous phase, were derived. The results are discussed in terms of structural contributions to the energetics of the alkyl-substituted thiophenes, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T=298.15 K, for 2- and 3-alkyl-substituted thiophenes, both in the condensed and in the gaseous phases.  相似文献   

2.
The standard (p o=0.1 MPa) molar energies of combustion for the crystalline 1-benzyl-4-piperidinol and 4-piperidine-piperidine, and for the liquid 4-benzylpiperidine, were measured by static bomb calorimetry, in oxygen, at T=298.15 K. The standard molar enthalpies of sublimation or vaporization, at T=298.15 K, of these three compounds were determined by Calvet microcalorimetry. Those values were used to derive the standard molar enthalpies of formation, at T=298.15 K, in their condensed and gaseous phase, respectively.  相似文献   

3.
The standard (p o=0.1 MPa) molar enthalpies of combustion atT=298.15 K were measured by static bomb combustion calorimetry for liquidN,N-diethylaniline,N,N-dimethyl-m-toluidine,N,N-dimethyl-p-toluidine, andN-ethyl-m-toluidine. Vaporization enthalpies forN,N-dimethyl-m-toluidine andN-ethyl-m-toluidine were determined by correlation gas chromatography. Derived standard molar values of f H m o (g) at 298.15 K forN,N-diethylaniline (62.1±7.6);N,N-dimethyl-m-toluidine (72.6±7.3),N,N-dimentyl-p-toluidine (68.9±7.4),N-ethyl-m-toluidine (30.5±3.8 kJ· mol–1) were obtained.  相似文献   

4.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, in the gaseous phase, of three piperidinecarboxamide derivatives, namely 1-, 3- and 4-piperidinecarboxamide, were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by Calvet microcalorimenty, respectively.The final results are analysed and discussed in terms of molecular structure.  相似文献   

5.
The mean values of the standard massic energy of combustion of caffeine in phase I (or alpha) and in phase II (or beta) measured by static-bomb combustion calorimetry in oxygen, at T = 298.15 K, are Δcu° (C8H10O2N4, I) = −(21823.27 ± 0.68) J · g−1 and Δcu° (C8H10O2N4, II) = −(21799.96 ± 1.08) J · g−1, respectively.The standard (p° = 0.1 MPa) molar enthalpy of formation in condensed phase for each form was derived from the corresponding standard molar enthalpies of combustion as, and .The difference between the standard enthalpy of formation of the two polymorphs in condensed phase was also evaluated by using reaction-solution calorimetry. The obtained result, 2.04 ± 0.25 kJ · mol−1, is in agreement, within the uncertainty, with the difference between the molar enthalpies of formation obtained from combustion experiments (4.5 ± 3.2) kJ · mol−1, which can be considered as an internal test for consistency of the results.A value for the standard enthalpy of formation of caffeine in the gaseous state was proposed: , estimated from the values of the standard enthalpies of formation of both crystalline forms obtained in this work, and the data on standard enthalpies of sublimation collected from the literature.  相似文献   

6.
The standard molar enthalpies of vaporization l g H m º of 2,5-dimethylfuran, 2-tert-butylfuran, 2,5-di-tert-butylfuran, cyclopentenyl methyl ether, cyclohexenyl methyl ether, and tert-amyl methyl ether were obtained from the temperature variation of the vapor pressure measured in a flow system. The standard (p° = 0.1 MPa) molar enthalpies of formation f H m º (1) at the temperature T = 298.15 K were measured using combustion calorimetry for 2,5-dimethylfuran, 2-tert-butylfuran, and 2,5-di-tert-butylfuran. From the derived standard molar enthalpies of formation for gaseous compounds, ring correction terms and non-nearest neighbor interactions useful in the application of the Benson group additivity scheme were calculated.  相似文献   

7.
    
The standard enthalpies of formation ΔHf°(g) of mono- and gem-di(alkoxycarbonyl)-substituted cyclopropanes 1 , cyclobutanes 2 and cyclopentanes 3 have been calculated from the standard enthalpies of combustion ΔHc°, which were measured calorimetrically, in combination with the standard enthalpies of vaporization ΔHvap°. The latter were obtained for 1a − c , 2b − c and 3b − c from the temperature dependence of the vapor pressures, which were measured in a flow system. Contrary to suggestions in the literature, only weak stabilization (≤ 8 kJ · mol−1) of small rings by gem-alkoxycarbonyl substituents was observed. In this context, we give a revised value for the enthalpy of combustion of methyl cyclobutanecarboxylate. It is concluded that the known high rates of ring closure to gem-dialkoxycarbonyl cyclopropanes are not attributable to a ‘stabilizing effect’ resulting from conjugation between the alkoxycarbonyl substituents and the cyclopropane ring, as has been suggested in the literature. The operation of a Thorpe-Ingold- or gem-dimethyl-type effect would seem to offer a more satisfactory interpretation.  相似文献   

8.
The thermochemical study of cubane-1,4-dicarboxylic acid (1), diethyl cubane-1,4-dicarboxylate (2), diisopropyl cubane-1,4-dicarboxylate (3), and bis(2-fluoro-2,2-dinitro)ethyl cubane-1,4-dicarboxylate (4) was performed. The standard enthalpies of combustion (c H°) and formation (f H°) of these compounds were estimated using the method of combustion in a calorimetric bomb in an oxygen atmosphere. Using the additive group method, calculated values for f H° of these substances which agreed satisfactorily with the experimental ones were obtained. The strain energies (E s) of the cubic structure of derivatives1–4 were calculated. It was concluded thatE s did not change on substitution of hydrogen atoms in cubane for various functional groups and was equal toE s of the structure of cubane itself. The reliability of the single published value of f H° in the cubane crystal state, 541.8 kJ mol–1 (129.5 kcal mol–1), was confirmed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2471–2473, October, 1996.  相似文献   

9.
10.
The enthalpies of combustion (ΔH comb) of five primary, secondary, and tertiary alkyl(aryl)arsines in the condensed state were calculated using the equation ΔH comb = −385.8–110.3N, where N is the number of bond-forming electrons. The dependence presented is used for the calculation of the enthalpies of combustion of full esters and amidoesters of arsinous acid of noncyclic and cyclic structures. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1042–1043, May, 2007.  相似文献   

11.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T-298.15 K, for 2,5-dimethylpyrazine (2,5-DMePz) and for the two dimethylpyrazine-N,N′-dioxide derivatives, 2,3-dimethylpyrazine-1,4-dioxide (2,3-DMePzDO) and 2,5-dimethylpyrazine-1,4-dioxide (2,5-DMePzDO), were derived from the measurements of standard massic energies of combustion, using a static bomb calorimeter, and from the standard molar enthalpies of vaporization or sublimation, measured by Calvet microcalorimetry. The mean values for the molar dissociation enthalpy of the nitrogen-oxygen bonds, 〈DH m0〉(N-O), were derived for both N,N′-dioxide compounds. These values are discussed in terms of the molecular structure of the two N,N′-dioxide derivatives and compared with 〈DH m0〉(N-O) values previously obtained for other N-oxide derivatives.  相似文献   

12.
13.
Thermochemical studies on the thioproline   总被引:3,自引:0,他引:3  
The combustion energy of thioproline was determined by the precision rotating-bomb calorimeter at 298.15 K to be Δc U= –2469.30±1.44 kJ mol–1. From the results and other auxiliary quantities, the standard molar enthalpy of combustion and the standard molar enthalpy of formation of thioproline were calculated to be Δc H m θC4H7NO2S, (s), 298.15 K= –2469.92±1.44 kJ mol–1 and Δf H m θC4H7NO2S, (s), 298.15K= –401.33±1.54 kJ mol–1.  相似文献   

14.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

15.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   

16.
一水合邻菲罗啉的热化学性质   总被引:1,自引:0,他引:1  
用纯度为99.999%的量热基准苯甲酸标定了实验室建立的精密转动弹量热计,其能当量为18604.99±8.14J/K,测得一水合邻菲罗啉(phen·H2O)的燃烧能为-5757.45±2.53kJ/mol,换算成标准燃烧焓为-5759.93±2.53kJ/mol,进而计算出一水合邻菲罗啉的标准生成焓为-391.34±2.98kJ/mol。  相似文献   

17.
Sergey P. Verevkin   《Thermochimica Acta》1998,310(1-2):229-235
The standard enthalpies of formation ΔfHo (liq. or cr.) at the temperature T = 298.15 K were measured using combustion calorimetry for benzophenone (A), 1-indanone (B), -tetralone (C), 9-fluorenone (D), anthrone (E) and dibenzosuberone (F). The standard enthalpies of vaporization ΔvHo or sublimation ΔsHo of A-F and 5,7-dihydro-6H-dibenzo[a,c]cyclohepten-6-one (G) were obtained from the temperature function of the vapor pressure measured in a flow system. Enthalpies of fusion ΔmH of solid compounds were measured by DSC. From the enthalpies of formation of the gaseous compounds of A-G the values of their strain enthalpies were derived and structural effects discussed.

  相似文献   


18.
19.
As practiced disciplines, structural chemistry and thermochemistry need not be related. In the current study they are: the entire contents of the journal Structural Chemistry (Vol. 12) for the year 2001 has been reviewed and then each and every article that appeared therein was given a thermochemical commentary, spin or slant.  相似文献   

20.
The standard molar enthalpies of formation H f 00B0; (liq) at the temperature t = 298.15 K were determined using combustion calorimetry for N-methyl-3-methyl-3-phenyl-2-butaneamine 1a, N,N-dimethyl-3-methyl-3-phenyl-2-butaneamine 1b N-methyl-2,3-dimethyl-3-phenyl-2-butaneamine 2a, and N,N-dimethyl-2,3-dimethyl-3-phenyl-2-butaneamine 2b. The standard molar enthalpies of vaporization H vap 00B0; of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. The following standard molar enthalpies of formation in gaseous phase H f 00B0; (g) are obtained from these data: for 1a – 10.9 ± 1.9; 1b – 3.6 ± 1.8; 1c – 26.6 ± 1.4, and 1d – 23.0 ± 1.8 kJ mol–1. From the standard molar enthalpies of formation for gaseous compounds which are available in the literature, improved values for the increments of the Benson group addivitiy scheme of amines were calculated. They are used to determine the strain enthalpies of the amines 1 and 2 from this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号