首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The problem of the stability of a circular cylinder in a circulation flow is considered under the condition that the cylinder can perform both free (free cylinder) and forced oscillations (cylinder on a spring). It is shown that this simple system can be unstable in the presence of flow vorticity. Particular cases of vorticity distributions which make it possible to obtain an analytic solution are considered. The case of weak monotonically decreasing vorticity of an arbitrary form is analyzed for an arbitrary relation between the densities of the cylinder and the fluid. It turns out that the instability can develop only for a cylinder whose density is greater than that of the fluid. An approximate method of solving this problem based on consideration of the energy balance in the system is constructed. This makes it possible to obtain an expression for the growth rates and explain the physical mechanism realizing the instability, which is associated with the possibility of energy transfer from perturbations in the critical layer to the cylinder oscillations.  相似文献   

3.
The linear steady problem of an irrotational uniform flow past a horizontal circular cylinder located in the upper or in the lower layer of a two-layer fluid is solved by the multipole-expansion method. The flow is perpendicular to the axis of the cylinder. The fluid is assumed to be inviscid and incompressible, and the flow in each layer is assumed to be potential. The upper layer can be bounded by a free surface or a solid lid, and the lower layer by a rigid horizontal bottom. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 91–101, November–December, 1998.  相似文献   

4.
The infinite-series solutions for the creeping motion of a viscous incompressible fluid from half-space into semi-infinite circular cylinder are presented. The results show that inside the cylinder beyond a distance equal to 0.5 times the radius of the tube from the pore opening, the deviation of the velocity profile from Poiseuille flow is less than 1%. The inlet length in this case is comparable to that computed for a finite circular cylinder pore by Dagan et al.[1]. In the half-space outside the cylinder pore region, the flow is strongly affected by the wall. Beyond one radius of the tube from the orifice, the solutions match almost exactly the flow through an orifice of zero thickness given by Sampson[2]. The relationship between the pressure drop and the volumetric flow rate is also computed in the present paper for the semi-infinite tube.  相似文献   

5.
We consider the problem of free oscillations of an ideal fluid in a container that has the form of a right circular cylinder with arbitrary axisymmetric bottom in the case where the unperturbed free surface of the fluid is covered by an elastic membrane or plate. Using the expansion in eigenfunctions of an auxiliary spectral problem with a parameter in boundary conditions and the method of decomposition of the domain of meridional cross-section of a container, we obtain an analytic solution of the problem. Individual examples of mechanical systems are considered, for which we construct solutions by using the proposed algorithm, analyze these solutions, and compute the frequencies and forms of oscillations.  相似文献   

6.
A double-transform technique provides a semi-analytic solution in the form of a series expansion for unsteady axisymmetric Stokes flow in the entrance region of a semi-infinite rigid cylindrical tube. This in turn offers an appropriate bench-mark problem for evaluating the quality of numerical approximations. To illustrate this, periodic axial flow in a circular cylinder is considered. Some aspects of the bench-mark problem that are of interest include the reverse flow in the wall layers, the accuracy of the approximate method in different flow regimes and the mesh grading. This bench-mark problem and the numerical study provide some insight into practical issues pertinent to the approximate solution of unsteady and periodic flows.  相似文献   

7.
Summary The complete Navier-Stokes equations which describe the unsteady flow of a viscous incompressible fluid when an infinite circular cylinder is given an impulsive twist, and simultaneously a constant suction velocity is imposed on the cylinder, are integrated using Laplace transforms. It is found that points which are at a greater distance from the cylinder are nearer to steadiness than points which are closer to the cylinder. Unsteady flow through a concentric annulus has also been considered.  相似文献   

8.
The lateral buckling and helical buckling problem of a circular cylinder constrained by an inclined circular cylinder under a compressive force, torsion, and its own weight is complicated and difficult to obtain an exact analytical solution. Thus, the non-linear differential equation is solved incrementally using the discrete singular convolution (DSC) algorithm together with the Newton–Raphson method. Detailed formulations are worked out. A simple way to numerically simulate the helical buckling is proposed and solution procedures are given. Four examples with various inclined angles, weights per unit length of the inner cylinder, axial applied loads, and boundary conditions are investigated. To verify the formulations and solution procedures, comparisons are firstly made with data obtained using the finite element method. It is verified that under certain circumstance, only lateral or helical buckling alone will occur. On some other circumstance, both lateral buckling and helical buckling may occur and the critical helical buckling loads are higher than the critical lateral buckling loads if frictions are not considered. Some conclusions are made based on the results presented herein.  相似文献   

9.
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively started and decelerated flows. The impulsively started problem was considered to validate the method and has yielded results which agree quite closely with existing results from both calculations and experiments. The decelerated flow analysis produced results which can be explained in terms of induced velocity effects from existing wake vortices for both suddenly stopped and uniformly decelerated flows.  相似文献   

10.
A two-dimensional unsteady analysis of an elastic circular cylindrical shell that enters a thin layer of an ideal incompressible liquid is considered. The cylinder initially touches the liquid free surface at a single point and then penetrates the liquid layer at a constant vertical velocity. The problem is coupled because the liquid flow, the shape of the elastic shell and the geometry of the contact region between the body and the liquid must be determined simultaneously. The flow region is subdivided into four complementary regions that exhibit different properties: the region beneath the entering body surface, the jet root, the spray jet, and the outer region. A complete solution is obtained by matching the solutions within these four subdomains. The structural analysis is based on the normal-mode method. Strain-time histories of the inner surface of the cylinder are of particular interest. In the case of a very flexible shell three distinct regimes of the impact process were found. For a high impact velocity the lower part of the shell flattens and the shell does not enter the water. For a moderate impact velocity the shell reaches the bottom and an effect of “fluid capture” may occur. For a low impact velocity the shell penetrates the liquid, but the size of the contact region decreases before the shell reaches the bottom. This behaviour corresponds to exit or “reflection” of the shell from the water layer.  相似文献   

11.
We consider the arbitrary motion of a circular cylinder in an ideal fluid near a vertical wall. This problem is usually solved in the approximate formulation with a degree of error which is difficult to assess, increasing with approach of the cylinder to the wall [1, 2], The exact solution has previously been carried out only for the case of purely circulatory flow about the cylinder [3].  相似文献   

12.
The problem of hydrodynamic loads due to the interaction of a gravity current propagating over a bottom channel with a submerged circular cylinder is studied experimentally. It was shown that in the examined range of parameters, the hydrodynamic loads are simulated after Froude. The hydrodynamic loads are maximal if the cylinder lies on the bottom, and they decrease rapidly with increase in the distance from the cylinder to the channel bottom. The effects of mixing and entrainment on the nature of the hydrodynamic loads are considered.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 81–90, March–April, 2005.  相似文献   

13.
It is well known from a lot of experimental data that fluid forces acting on two tandem circular cylinders are quite different from those acting on a single circular cylinder. Therefore, we first present numerical results for fluid forces acting on two tandem circular cylinders, which are mounted at various spacings in a smooth flow, and second we present numerical results for flow-induced vibrations of the upstream circular cylinder in the tandem arrangement. The two circular cylinders are arranged at close spacing in a flow field. The upstream circular cylinder is elastically placed by damper-spring systems and moves in both the in-line and cross-flow directions. In such models, each circular cylinder is assumed as a rigid body. On the other hand, we do not introduce a turbulent model such as the Large Eddy Simulation (LES) or Reynolds Averaged Navier-Stokes (RANS) models into the numerical scheme to compute the fluid flow. Our numerical procedure to capture the flow-induced vibration phenomena of the upstream circular cylinder is treated as a fluid-structure interaction problem in which the ideas of weak coupling is taken into consideration.  相似文献   

14.
Steady convective diffusion of a dissolved substance toward the surface of a cylinder (optionally circular) in a viscous flow is examined. An analytical solution is obtained in [1, 2] for the case of laminar flow around a curved cylinder when the freestream flow is straight and uniform. More complex hydrodynamical problems are examined in [3, 4]. In the present work an approximate analytical expression is obtained for diffusive flow of a substance toward the surface of a solid cylinder in the case of an arbitrary two-dimensional flow. Formulas are given for calculating the mass transfer at a circular cylinder in some shear flows of a viscous, incompressible fluid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 163–166, September–October, 1976.The authors thank Yu. P. Gupalo and Yu. S. Ryazantseva for formulating the problem and their attention to the work.  相似文献   

15.
The problem of drag minimization in a viscous fluid by means of controlled suction (blowing) is considered. In the low Reynolds number approximation matched asymptotic expansions are used to construct the second approximation and analytic solutions of the optimization problem are found for a sphere and a circular cylinder. Transition from unseparated to separated flow is accompanied by a qualitative restructuring of the optimal solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–32, May–June, 1989.  相似文献   

16.
Incompressible fluid flow with a linear relationship between the vorticity and the stream function past a circular cylinder is studied.Vortical flows about profiles have been considered in several studies [1–15], but in all these studies with the exception of [15] a constant vorticity was assumed (in [15] an approximate solution is found of the problem of incompressible fluid flow about a Zhukovskii profile with parabolic distribution of the velocities in the approaching stream).A freestream velocity profile similar to that considered below occurs, for example, in a planar jet (laminar or turbulent), in the wake behind a bluff body, in the boundary layer along an infinite plane [4,13], in turbulent jet flows with reverse fluid currents [16]. A similar situation also arises in the flow past an array of cylinders with large spacing which is located in the wake of another array.The author wishes to thank V. E. Davidson for posing the problem and for guidance in its solution.  相似文献   

17.
In this paper, the Chimera method with the Schwarz algorithm, which is one of overlapping domain decomposition methods, is applied for a flow around a rotating body. The incompressible Navier–Stokes equations expressed in a non-inertial frame of reference are used for the governing equations. The implicit scheme with accuracy of the second order is used for the temporal discretization. The mixed finite element formulation with the iso-P2 P1/P1 elements for velocity and pressure elements is used for the spatial discretization. For numerical examples, two-dimensional analyses of flow around a circular cylinder and an ellipse cylinder which rotate uniformly in a uniform flow were performed, the validity of the present technique was verified and the characteristics of the flow were considered.  相似文献   

18.
The initial-boundary value problem of the vertical ascent of a circular cylinder in a multilayer fluid is considered within the nonlinear theory. In each layer the fluid is ideal, incompressible, heavy, and homogeneous. At the initial instant of time the cylinder is located in the lower layer and begins smoothly to accelerate vertically from zero to a constant velocity. A system of integrodifferential equations of the problem is obtained. As unknowns, this system contains both the intensities of the singularities simulating the fluid and rigid boundaries and the functions describing the shape of the interface between the fluid media. The numerical solution of this system is based on two iteration processes, one of which is associated with time integration using the Runge-Kutta-Felberg scheme, while the other is associated with the solution of a system of linear algebraic equations obtained by discretization of the integral relations in each time step. The problem of the vertical ascent of a cylinder in a three-layer fluid (seawater, fresh water and air) is considered in detail. The results of calculating the perturbations of the fluid interfaces and the distributed and total hydrodynamic contour characteristics are given. The results obtained are compared with the solution of the problem of the ascent of a circular cylinder to the interface between water and air media. It is concluded that the third layer and the Froude number significantly affect the nature of the perturbations induced by the contour. Omsk, e-mail: gorlov@iitam.omsk.net.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 153–159, March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

19.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

20.
The solution of the Gromeko problem [1] on unsteady flow of a viscous fluid in a long circular pipe is among the few exact solutions of the Navier-Stokes equations. Its effective solution is obtained only when the longitudinal pressure gradient is given as an arbitrary time function. However, in practice we encounter cases when the flow rate is a known time function. This sort of problem arises, in particular, in rheological experiments using viscometers with a given flow rate. In this case the determination of the pressure gradient from the given flow rate leads in the general case to a very unwieldy expression. Below we present an effective solution of this problem for viscous and elasticoviscous media using the method of solving the inlet flow problem for a steady flow of a viscous fluid in a semi-infinite pipe. It is shown that for the case of a viscous fluid these two problems are actually equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号