首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
Bending over backwards to build buckybowls and -balls? For the last two decades, flash vacuum pyrolysis of chloro- and bromoarenes has been the method of choice for intramolecular aryl-aryl couplings that afford geodesic polynuclear arenes ("buckybowls") including fullerene C(60). Recently, even fluoroarenes were subjected under relatively mild conditions to intramolecular C(Ar)-C(Ar) couplings by combining the cleavage of C(Ar)-F with the formation of very strong Si-F or Al-F bonds (see picture; green C, white H).  相似文献   

3.
The free energy landscapes of peptide conformations were calibrated by ab initio quantum chemical calculations, after the enhanced conformational diversity search using the multicanonical molecular dynamics simulations. Three different potentials of mean force for an isolated dipeptide were individually obtained by the multicanonical molecular dynamics simulations using the conventional force fields, AMBER parm94, AMBER parm96, and CHARMm22. Each potential of mean force was then calibrated based upon the umbrella sampling algorithm from the adiabatic energy map that was calculated separately by the ab initio molecular orbital method, and all of the calibrated potentials of mean force coincided well. The calibration method was also applied to the simulations of a peptide dimer in explicit water models, and it was shown that the calibrated free energy landscapes did not depend on the force field used in the classical simulations, as far as the conformational space was sampled well. The current calibration method fuses the classical free energy calculation with the quantum chemical calculation, and it should generally make simulations for biomolecular systems much more reliable when combining with enhanced conformational sampling.  相似文献   

4.
We present direct evidence of enhanced non‐radiative energy transfer between two J‐aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump–probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light‐matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light‐energy harvesting.  相似文献   

5.
Raman and infrared spectroscopies have been used to determine the addition reaction of mercaptopropyltrimethoxysilane (MPTMS) to allyltrimethoxysilane (ATMS) and 7-octenyltrichlorosilane based on the vibrational intensity variation of thiol and vinyl groups in the reaction mixtures. Due to the distinct and moderate intensity of Raman bands observed in the present experiment, the identification with Raman spectroscopic method is more sensitive than that with FTIR spectroscopy. In the presence of UV radiation, thiol addition reaction has been observed in the direct mixing samples of silanes. Hybrid sol-gels prepared with the use of MPTMS and ATMS as precursors in both acidic and basic conditions have revealed the progression of thiol addition under the UV radiation exposure. UV radiation is similarly effective to induce the thiol addition in the sol-gel coated aluminum tiles. Without UV radiation, the use of free radical initiator in the sol-gel samples might also help to induce the addition reaction.  相似文献   

6.
A hybrid compound consisting of palladium(salen) [salen = N,N′‐bis(salicylidene)ethylenediamine] complex covalently linked to a lacunary Keggin‐type polyoxometalate, K8[SiW11O39](POM), was synthesized and characterized by FT‐IR, elemental analysis, inductively coupled plasma and diffuse reflectance UV–visible spectroscopic methods. The hybrid, [Pd(salen)–POM], was investigated in the Suzuki cross‐coupling in EtOH/H2O under mild reaction conditions. In comparison to the corresponding organic and inorganic moiety, the hybrid has shown greatly improved catalytic activity, and much higher yields toward coupling products were obtained with a low catalyst loading for various aryl halides, including unreactive and sterically hindered ones. The catalyst also exhibited prominent recyclable performance and no obvious loss of activity was observed after six consecutive runs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson–Hasselbalch‐based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The rapid development of nanomaterials, particularly advanced hybrid nanoparticles, has made new opportunities for the design and fabrication of high‐performance metal‐based catalysts. However, generating metal nanoparticles of desired size without aggregation is an important challenge for enhancing the catalytic activity of metal nanoparticles supported in the host matrix. In this work, a hybrid nanoporous material, namely Pd nanoparticles@N‐heterocyclic carbene@ZIF‐8, with a high internal surface area was successfully prepared using a dispersed anionic sulfonated N‐heterocyclic carbene–Pd(II) precursor inside the cavities of zeolitic imidazolate framework (ZIF‐8) using an impregnation approach followed by reduction with NaBH4. The anionic sulfonated N‐heterocyclic carbene was found to be a superb ligand for the stabilization of Pd nanoparticles in the pores of ZIF‐8. The resulting system was applied to the Mizoroki–Heck cross‐coupling reaction, in which the catalyst showed high catalytic activity under mild reaction conditions.  相似文献   

9.
Non‐selective and selective versions of several proton‐detected 1D NMR experiments to be applied to 15N are proposed. Clean, artifact‐free 1D spectra are easily obtained by the effective coherence selection by pulsed‐field gradients and the attainable sensitivity is maximized using modern pulse schemes. Despite the low sensitivity inherent to 15N NMR spectroscopy, the successful application of these experiments is demonstrated for resonance assignments and accurate measurement of both one‐bond and long‐range proton–nitrogen coupling constants on a model tripeptide at natural abundance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The molecular geometry has been optimized without any constraints using different basis sets and levels of theory as: Hartree-Fock with basis sets 6–31+G**, 6–311++G**, cc-pVTZ and aug-cc-pVTZ, MP2 with basis sets 6–311++G** and cc-pVTZ, MP3 with basis set 6–311++G**, and density functional theory with basis sets 6–311++G** and cc-pVTZ. Small basis sets up to 6-31G predict the syn conformation of the methyl group to be the most stable conformation. Larger basis sets predict an unsymmetrical conformation with one of the H atoms perpendicular to the amide skeleton or an anti-like conformation. Dunnings correlation consistent polarized valence triple zeta, cc-pVTZ, basis set including MP2 predict two conformations, one perpendicular and one anti to be the most stable. The DFT calculations predict anti-like conformations. The most accurate calculations predict anti-like conformations which have not been predicted previously. The vibrational frequencies have been calculated for several basis sets and compared to the observed frequencies. The wagging frequency of the NH2 is very dependent on the basis sets and levels of theory. Most calculations predict a planar NH2 group in agreement with experiment. A scaled molecular force field has been determined by fitting the calculated frequencies to the observed ones for the perpendicular conformation using MP2/cc-pVTZ. The barrier heights for the methyl group have been calculated. The rotational constants, IA + IBIC values and dipole moments are compared with experimental values.  相似文献   

11.
An overview of the state-of-the-art in LC enantiomer separation is presented. This tutorial review is mainly focused on mechanisms of chiral recognition and enantiomer distinction of popular chiral selectors and corresponding chiral stationary phases including discussions of thermodynamics, additivity principle of binding increments, site-selective thermodynamics, extrathermodynamic approaches, methods employed for the investigation of dominating intermolecular interactions and complex structures such as spectroscopic methods (IR, NMR), X-ray diffraction and computational methods. Modern chiral stationary phases are discussed with particular focus on those that are commercially available and broadly used. It is attempted to provide the reader with vivid images of molecular recognition mechanisms of selected chiral selector–selectand pairs on basis of solid-state X-ray crystal structures and simulated computer models, respectively. Such snapshot images illustrated in this communication unfortunately cannot account for the molecular dynamics of the real world, but are supposed to be helpful for the understanding. The exploding number of papers about applications of various chiral stationary phases in numerous fields of enantiomer separations is not covered systematically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号