首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》1997,23(2):293-298
The influence of the spacer structure on the photochemical phase transition behaviour was explored for azobenzene polymer liquid crystals (azo-PLCs) possessing siloxane spacers in the polymer side chain, and for analogue without the siloxane spacer. The photochemical phase transition of the azo-PLC with the siloxane spacer was found to proceed less effectively than that of the azo-PLC without the siloxane spacer. It was also confirmed that the spacer structure does not affect the trans-cis photoisomerization behaviour of the azobenzene moieties. These results were interpreted in terms of stabilization of the alignment of the mesogens in the liquid crystalline phase by the siloxane spacer, since the siloxane chain is one of the most flexible spacers and decouples the motion of the polymer backbone from that of the aligned mesogens. Furthermore, the response of the azo-PLCs in the photochemical phase transition was evaluated by means of a laser pulse. The phase transition occurred in 300 mus for both samples.  相似文献   

2.
A series of chiral azobenzene compounds with branched terminal were synthesised, and the photosensitive performances were investigated accordingly. It was found that the photochemical properties were mainly affected by the trans–cis configuration of azobenzene and the linked position between the azobenzene and chiral centre. The para-type azobenzenes showed general photochemical decrease in helical twisting power (HTP), but the meta-type ones appeared interestingly showed photochemical increase in HTP. This work provided an effective method for designing molecules to control blue phase (BP) including adjusting colours, inducing BP and extending BP range, which was promising in the applications of optically addressable devices.  相似文献   

3.
We reported here the two-component self-assembling building blocks capable of forming lyotropic liquid crystal and liquid-crystalline physical gel. One of the components has a molecular characteristic of C(3)-symmetrical trisureas containing three azobenzene groups, which can form liquid-crystal phase in a temperature range of 133-215 degrees C. Another one has a trisamide core, which can self-aggregate to fibrous network through hydrogen bonds of amide moieties. The mixture of these two components performs lyotropic liquid crystal as well as liquid-crystalline physical gel in a temperature range larger than that of sole compound, suggesting that the cooperation of hydrogen bonds between these components stabilizes the mesophase of the assembly. The mechanism of formation of the mesophase was investigated by infrared spectra and small-angle X-ray scatterings.  相似文献   

4.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans - cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

5.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans-cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

6.
Several chiral azobenzene compounds having different chiral substituents were synthesized. A cholesteric phase was induced by mixing each chiral azobenzene compound with a host non-chiral nematic liquid crystal (E44). The helical twisting power (HTP) as well as the change in HTP by trans-cis photoisomerization of the chiral azobenzene compound was dependent on the structure of the chiral substituents. A compensated nematic phase was induced by combination of E44, a chiral azobenzene compound and a non-photochromic chiral compound. Reversible switching between the compensated nematic phase and cholesteric phase was brought about by trans-cis photoisomerization of the chiral azobenzene compound in the liquid crystalline systems. An azobenzene compound substituted with a menthyl group showed the highest efficiency as the trigger for the switching; this efficiency was related to the compactness of the chiral group substituted within the azobenzene core moiety.  相似文献   

7.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

8.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

9.
A photoresponsive azobenzene molecule DCAZO2 with two cholesteryl groups linked to both sides of the azobenzene group is doped in a mixture of nematic liquid crystal E7 and chiral dopant S811 (61.9 wt% E7, 36.1 wt% S811 and 2.0 wt% DCAZO2). Cooled from isotropic phase to 33.0°C, chiral nematic liquid crystal (N*LC) was formed in the sample and then the temperature was kept unchanged at 33.0°C. UV light irradiation induces the transcis photoisomerisation and thus an obvious phase transition. When the azobenzene groups isomerise to a cis-saturated state, the UV light was turned off and the white light was turned on at the same time. The bent-shaped cis isomer then turns back to the planar trans isomer gradually. A blue–green platelet texture representing cubic blue phase (BP) was observed and the size of the platelets was increased along with the cistrans isomerisation. UV–vis absorption spectra indicate that the photoinduced BP exists when the isomerisation degree is between 79% and 18%, and further cistrans isomerisation change BP back into N*LC. The large geometric structure of the cholesteryl groups and the large bent angle θ of the cis isomer are supposed to be responsible for the interesting result.  相似文献   

10.
卿鑫  吕久安  俞燕蕾 《高分子学报》2017,(11):1679-1705
交联液晶高分子兼具液晶的各向异性和高分子网络的弹性,并且具有优异的分子协同作用.在交联液晶高分子中引入光响应基团,例如偶氮苯后,即可赋予其光致形变性能,利用分子协同作用可以将光化学反应引起的分子结构变化放大为宏观形变,从而将光能直接转化成机械能.通过合理的分子结构和取向设计可以使液晶高分子产生诸如伸缩、弯曲、扭曲、振动等多种形式的光致形变,并用于各类光控柔性执行器件的构筑,在人工肌肉、微型机器人、微量液体操控等领域呈现出独特的优势和广阔的应用前景.本文总结和评述了光致形变液晶高分子的研究,包括材料结构对光致形变性能的影响、新型可加工光致形变材料的研究、利用可见光和近红外光触发形变的策略,以及光致形变液晶高分子微执行器在微量液体操控中的应用,最后展望了该领域的发展方向.  相似文献   

11.
Photochromic chiral azobenzene compounds with different molecular structures were synthesized, and a cholesteric phase was induced by mixing each chiral azobenzene compound with a non-photochromic chiral compound in a host nematic liquid crystal, E44. Helical pitch and, thus, helical twisting powers (HTP) of the chiral azobenzene compounds and the non-photochromic chiral compound were determined by Cano's wedge method. Molecular structures of the chiral azobenzene compounds were predicted by means of determining their molecular aspect ratio (L/D) with semiempirical molecular calculations (MOPAC at PM3 level). The effects of molecular structure on HTP of the chiral azobenzene compounds are studied in detail. Molecular structures of chiral azobenzene compounds significantly influence their HTPs.  相似文献   

12.
Recent progress in alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions has been reviewed by dividing the modulation methods into two types: phase transitions (order–disorder change) and change of liquid crystal directors (order–order change). First, photochemical phase transitions and alignment changes of liquid crystals in guest/host mixtures and polymers are summarized. Then, alignment control of liquid crystals by linearly polarized light and photoactive surface layers is discussed. Finally, recent applications of alignment change and photochemical phase transitions of liquid crystals in holographic technology and photomechanical effects are introduced. In addition, future possible applications for a variety of practical devices, such as display devices, optical switching and reversible optical image storage, are mentioned.  相似文献   

13.
The synthesis and mesomorphic behaviour are reported of a new series of dimers containing 4‐nitrobenzohydrazide and azobenzene groups as the mesogenic units. These non‐symmetric liquid crystal dimers are found to exhibit a monolayer smectic A phase (SmA1). Lateral hydrogen bonding and strong dipole–dipole interactions are shown to be the major driving forces for the formation of the SmA1 phase. The present study indicates that the intermolecular interactions and thus the mesophase morphology of the liquid crystal dimers can be controlled by the appropriate selection of the molecular fragments capable of forming H‐bonds.  相似文献   

14.
Two series of novel liquid crystalline photo‐crosslinkable bis(vanillylidene‐azobenzene) cycloalkanone containing polymers, namely poly(vanillylidene alkyloxy‐4,4′‐azobenzenedicarboxylic ester)s, have been synthesised from bis[m‐hydroxyalkyloxy(vanillylidene)cycloalkanone] (m = 6, 8, 10) with azobenzene dicarbonylchloride by solution polycondensation method at ambient temperature. Polymers with varying spacer lengths have been synthesised and characterised by spectroscopic techniques. These variations have been correlated with the thermal properties and transition temperatures. Thermal transitions were analysed by differential scanning calorimetry (DSC) and the mesophases were identified by hot stage optical polarised microscopy (HOPM). All of the polymers were found to exhibit liquid crystalline properties. Transition temperatures were observed to decrease with increasing spacer length. The thermogravimetric analysis reveals that all of the polymers were stable up to 280°C undergo two‐stage decomposition. Using the UV–visible photolysis studies we investigated the simultaneous behaviour of reactivity rates of crosslinking in the vanillylidene unit and isomerisation caused by the azobenzene unit in the photo‐crosslinkable main chain liquid crystalline polymers. The photolysis of liquid crystalline bis(vanillylidene)cycloalkanone‐based polymers reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerisation of azobenzene unit and 2p+2p addition by vanillylidene units. The EZ photoisomerisation in the liquid crystal phase disrupts the parallel stacking of the mesogens, resulting in the transition from the liquid crystal phase to isotropic phase. The photoreaction involving 2p+2p addition of the bis(vanillylidene)cycloalkanone units in the polymers results in the conjoining of the chains. The cyclopentanone polymers exhibited a faster rate of photolysis than the cyclohexanone polymers.  相似文献   

15.
Atomic force microscopy (AFM)/force curve measurements were used to study the photochemical process of UV‐treated (0, 10, 20, 30 and 60 min) organic thin films that were prepared from azobenzene and cinnamate side‐chain co‐grafted ladder‐like polysilsequioxanes (LPS). The morphological data of the thin films describe the changing process on the surface of the thin film. The statistical results of the adhesion force of the thin films further demonstrate the intermolecular characteristics of the thin films. A photosensitive thin film after UV exposure for 20 min would be a better material with a preferred orientation that can be used to make liquid‐crystal devices. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X‐ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of T ChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.  相似文献   

17.
《Liquid crystals》2001,28(3):375-379
Four series of azobenzene liquid crystal compounds containing a fluorinated tolan unit have been synthesized. The mesomorphic behaviours of these compounds were characterized by differential scanning calorimetry and optical polarizing microscopy. The compounds of these series exhibit a nematic, a smectic C or a smectic B phase. This investigation revealed that the alkoxy chain at the side of the azobenzene moiety plays a more important role in the formation of smectic phases than the one at the side of the tolan moiety.  相似文献   

18.
Two series of novel liquid crystalline photo-crosslinkable bis(vanillylidene-azobenzene) cycloalkanone containing polymers, namely poly(vanillylidene alkyloxy-4,4'-azobenzenedicarboxylic ester)s, have been synthesised from bis[m-hydroxyalkyloxy(vanillylidene)cycloalkanone] (m = 6, 8, 10) with azobenzene dicarbonylchloride by solution polycondensation method at ambient temperature. Polymers with varying spacer lengths have been synthesised and characterised by spectroscopic techniques. These variations have been correlated with the thermal properties and transition temperatures. Thermal transitions were analysed by differential scanning calorimetry (DSC) and the mesophases were identified by hot stage optical polarised microscopy (HOPM). All of the polymers were found to exhibit liquid crystalline properties. Transition temperatures were observed to decrease with increasing spacer length. The thermogravimetric analysis reveals that all of the polymers were stable up to 280°C undergo two-stage decomposition. Using the UV-visible photolysis studies we investigated the simultaneous behaviour of reactivity rates of crosslinking in the vanillylidene unit and isomerisation caused by the azobenzene unit in the photo-crosslinkable main chain liquid crystalline polymers. The photolysis of liquid crystalline bis(vanillylidene)cycloalkanone-based polymers reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerisation of azobenzene unit and 2p+2p addition by vanillylidene units. The EZ photoisomerisation in the liquid crystal phase disrupts the parallel stacking of the mesogens, resulting in the transition from the liquid crystal phase to isotropic phase. The photoreaction involving 2p+2p addition of the bis(vanillylidene)cycloalkanone units in the polymers results in the conjoining of the chains. The cyclopentanone polymers exhibited a faster rate of photolysis than the cyclohexanone polymers.  相似文献   

19.
In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.  相似文献   

20.
Trans-cis isomerization was investigated in a room temperature liquid crystal mixture of two azoxybenzene compounds. Experiments were performed on isolated molecules in dilute solutions and on the liquid crystal phase composed of the pure compounds. The absorption spectra of the trans and cis isomers were found to be similar to those of azobenzene compounds, as were the birefringence and order parameter of the nematic liquid crystal phase. The photo-optic properties were also similar in that irradiation by ultraviolet light caused the conversion from trans to cis isomers, while short wavelength visible light incident on these compounds resulted in the conversion from cis to trans isomers. The activation energy for thermal relaxation from the cis to trans isomer in the liquid crystal phase was determined to be (66±7) kJ/mole, which is less than for azobenzene in solution. While a photostationary state in a dilute solution with approximately equal numbers of trans and cis isomers was achieved, the nematic-isotropic transition of the mixture of the pure compounds decreased from 70°C to room temperature with a cis concentration of only about 12%. One unusual finding was that the photostationary concentration of trans and cis isomers due to irradiation with light of a specific visible wavelength depended on the starting concentrations of the two isomers, indicating that there may be a molecular conformation that is not photo-responsive and relaxes only thermally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号