首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat transfer performance for batch oscillatory flow mixing   总被引:2,自引:0,他引:2  
Experimental heat transfer data is presented for two batch operations of oscillatory flow mixing. In one case fluid is oscillated within a baffled tube and in the second case baffles are oscillated within a process fluid. For both situations the heat transfer coefficient depends on the intensity of oscillation, and the energy performance of each configuration corresponds to that of an equivalent net turbulent flow in a pipe or a batch stirred vessel. The results indicate that oscillatory flow batch mixing is as energy efficient as other conventional mixing configurations and the heat transfer performance indicates that each oscillatory flow mixing configuration could be satisfactorily used as a batch reactor system.  相似文献   

2.
The transient response of composite plates, with and without central circular holes, to blast loading is studied. The modal-analysis approach has been used in the computation of numerical results, which have been obtained for isotropic and orthotropic plates, with and without holes. In order to verify the theoretical results, experiments have been conducted on aluminum and unidirectionally reinforced E-glassepoxy plates, using a shock tube as the loading device. The experimental peak dynamic strains (normalized with respect to the pressure) are compared with the theoretical values. The strain-time history is also shown for a particular gage location in the composite plate. Finally, a comparison of dynamic-amplification factors, defined as the ratio of the peak dynamic strains to the static strains, has been made between the isotropic and the composite plates.  相似文献   

3.
The fundamentals for a two-phase system in a tubular reactor had been studied. It can be demonstrated that the physical models derived for an exothermic reaction with gas development during the reaction are matching the practical results of the experiments performed in the laboratory. The complex hydrodynamics have been theoretically studied on the computer which also gave the geometry for the pilotplant tubular reactor.  相似文献   

4.
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically.  相似文献   

5.
F. Ohtomo  K. Ohtani  K. Takayama 《Shock Waves》2005,14(5-6):379-390
The paper reports results of shock tube experiments of the attenuation of shock waves propagating over arrayed baffle plates, which is motivated to simulate shock wave attenuation created accidentally at the acoustic delay line in synchrotron radiation factory upon the rupture of a metal membrane separating the acceleration ring at high vacuum and atmospheric test chambers. Experiments were carried out, by using double exposure holographic interferometry with double path arrangement, in a 100 mm×180 mm shock tube equipped with a test section of 180 mm×1100 mm view field. Two baffle plate arrangements were tested: Oblique and staggered baffle plates; and vertical symmetric ones. Pressures were measured along the shock tube sidewall at individual compartments for shock Mach numbers ranging from 1.2 to 3.0 in air. The results were compared with a numerical simulation. The rate of shock attenuation over these baffle plates was compared for vertical and oblique baffle plates. Shock wave attenuation is more pronounced in the oblique baffle plate arrangements than in the vertical ones. PACS 47.40.Nm; 42.40.Kw Communicated by C. Needham  相似文献   

6.
The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of circular holes is determined. Based on the addition theorem, the solution of the field represented by multiple coordinate systems centered at each circle can be transformed into one coordinate system centered at one circle, where the boundary conditions are given. In this way, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the scattering of flexural wave by multiple holes in an infinite plate subject to the incident flexural wave. The formulation is general and is easily applicable to dealing with the problem containing multiple circular holes. Although the number of hole is not limited in our proposed method, the numerical results of an infinite plate with three circular holes are presented in the truncated finite system. The effects of both incident wave number and the central distance among circular holes on the DMCF are investigated. Numerical results show that the DMCF of three holes is larger than that of one, when the space among holes is small and meanwhile the specified direction of incident wave is subjected to the plate.  相似文献   

7.
Global buckling of perforated plates reinforced with circumferential strip or short tube is investigated. Effects of the hole radius, width of the strip, thickness and radius of the tube and boundary conditions are studied numerically and experimentally. Axial buckling loads of the holed plates decrease versus the hole radius. By using the strip or tube, the buckling strength increases significantly. In some cases, the stiffened plate has buckling load greater than the perfect plate. Numerical studies showed that the increasing restraints at the boundaries increase the buckling strength in any case and geometry of the plate.  相似文献   

8.
Numerical simulations in a gas turbine Swirl stabilized combustor were conducted to investigate the effectiveness of a cooling system in the protection of combustor walls. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system based on a big distribution of small holes (about 3,390 holes) bored on the flame tube walls. Two cases were considered respectively the flame tube without and with its cooling system. The calculations were carried out using the industrial CFD code FLUENT 6.2. The various simulations made it possible to highlight the role of cooling holes in the protection of the flame tube walls against the high temperatures of the combustion products. In fact, the comparison between the results of the two studied cases demonstrated that the walls temperature can be reduced by about 800°C by the mean of cooling holes technique.  相似文献   

9.
连续流微反应器的迅速发展为化学合成技术提供了一条可精准控制的路径。微反应器中流体的流动、混合和传质是反应的物理基础,因此强化传递就能够合理改善混和效果,增加相接触面积,减小微通道尺寸,以缩短分子扩散距离。由于微反应器中对流传递数量级非常低,不容易控制。通过改进微混合器构型和引入脉冲流动等主被动强化措施,可以有效改善对流和传质,影响化合反应。如何量化分析这些影响,是微反应器强化传质和优化控制反应过程的基础。本文基于有效的虚拟串行竞争反应格子Boltzmann模型,通过对Y型和倒Y型的微反应器的流场结构、混合传质和化合反应进行数值研究,定量分析了脉冲流动在不同流场构型下传质和化学反应的影响,所得结论可为连续流微反应器设计以及微反应精准控制提供有意义的参考。  相似文献   

10.
Generalized complex potentials, their expressions for a domain with elliptic holes, and the discrete least-squares method are used to analyze the generalized plane electroelastic state of a piezoelectric plate having holes and cracks with electric potentials applied to their boundaries. There are no mechanical loads. A numerical analysis is conducted. The effect of the applied voltage on the electroelastic state of the plate is examined  相似文献   

11.
An experimental study was conducted to investigate the impact of a rectangular baffle inside a square channel. PIV was used to measure the two-dimensional velocity fields. The measurements were conducted for two Reynolds numbers in the fully turbulent regime. The changes to the flow structure due to the insertion of a baffle were quantified by a direct comparison with the flow structure in the absence of a baffle, under similar conditions. Results show that the turbulent velocities are enhanced by a factor of two to three and the rates of energy production and dissipation are enhanced by more than an order of magnitude when a baffle is inserted in the channel. Significant enhancement of turbulence was observed in a region up to two times the baffle height immediately downstream of the baffle and the thickness of this layer increased to three times the baffle height further downstream of the baffle.  相似文献   

12.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We present quantitative analysis of image sequences of multi-stream injection nozzle flows with several different injection geometries in an experiment simulating mixing in a chemical oxygen-iodine laser. To visualize mixing, image sequences were acquired with planar laser-induced fluorescence (PLIF) in iodine that was injected into the main flow. The injection nozzle consisted of a slot, ejector, and injector block, with rows of ejector and injector holes along the slot length. The ejector flow exits in an underexpanded state so that upon expanding it forces the slot and injector flows together to enhance mixing. For this study, the diameter and geometry of ejector holes were varied to assess their effect on mixing. Two configurations of ejector holes were used, each with two different diameters for a total of four cases with data collected at downstream stations. We carry out a quantitative mixing analysis for these configurations, using two methods to quantify the mixing. The first method considers the statistics of the PLIF image intensity histograms, which are bimodal for poorly-mixed flows and have a single peak in well-mixed flows. The second method quantifies the properties of the mixing interface. Our analysis shows that two injection schemes significantly enhance mixing by stretching the mixing interface.  相似文献   

14.
在相同的开孔面积和开孔数目前提下,本文数值研究在开孔位置不同时圆缺高度为0.2D(D为折流板直径)的单弓型折流板换热器的壳程换热与流动阻力问题。数值结果表明:在折流板压强高的“高压区”,均匀地开孔对减小换热器壳程压降效果更好,其综合换热性能的性能评价因子E值也更好;在壳程入口速度为0.1m/s时,通过改变开孔位置,壳程压降可优化3%左右。  相似文献   

15.
The horseshoe vortex generated around the appendage-body junction of submarines strongly influences the non-uniformity of submarine wakes at the propeller discs. The flow characteristics around the appended submarine body are numerically simulated and analyzed, and a new method on the vortex control baffle is presented. Then, the influence of the vortex control baffle on the horseshoe vortex generated at the sail-body junction is numerically studied, and the flow phenomena caused by the vortex control baffle with different transverse positions is investigated further. Results show that the vortex control baffle can induce a kind of attached vortex in a rotational direction opposite to the horseshoe vortex; these two kinds of vortices undermine each other. Furthermore, when the transverse position of the vortex control baffle is close to the horseshoe vortex, the state of the horseshoe vortex is directly affected, and the flow structure becomes even more complex. We adapt the vortex control baffle for the horseshoe vortex generated at the stern foil-body junction. Results from the numerical simulation of the flow around the fully appended submarine model indicate that the effect of the vortex control baffle greatly improves the performance of the submarine wake. The circumferential non-uniformity of the axial, tangential, and radial velocity components are decreased markedly. The engineering applicability of the vortex control baffle has been well presented.  相似文献   

16.
The pressures and loads induced on the center of the end-wall of a shock tube by a shock wave that passes through different types of obstacles are investigated. Efforts have been made to understand the effect of the obstacle geometry on the load development. The experiments were conducted in a shock tube apparatus in which a modular test section was implemented. It is found that for a single-obstacle setup, the effect of the geometry becomes dominant when the blockage ratio (i.e., the ratio of the non-open area to the overall cross section) is large. It is also found that the attenuation effect is more pronounced for general geometries, which form diverging-like nozzle. In the case of multi-obstacles geometry, the same sensitivity to the blockage ratio as in the single-obstacle case is found. However, amplification or attenuation of the shock-wave load on the center of the end-wall of a shock tube is observed when the number of the obstacles is increased. This is due to different trapping effects of the shock wave between the obstacle and the end-wall.  相似文献   

17.
Based on the classical laminated plate theory, a finite composite plate weakened by multiple elliptical holes is treated as an anisotropic multiple connected plate. Using the complex potential method in the plane theory of elasticity of an anisotropic body, an analytical study concerned with the stress distributions around multiple loaded holes in finite composite laminated plates subjected to arbitrary loads was performed. The analysis makes use of the Faber series expansion, conformal mapping and the least squares boundary collocation techniques. The effects of plate and hole sizes, layups, the relative distance between holes, the total number of holes and their locations on the stress distribution are studied in detail. Some conclusions are drawn.  相似文献   

18.
An experimental study was conducted to investigate the effect of nozzle geometry on the mixing characteristics and turbulent transport phenomena in turbulent jets. The nozzle geometry examined were round, square, cross, eight-corner star, six-lobe daisy, equilateral triangle as well as ellipse and rectangle each with aspect ratio of 2. The jets were produced from sharp linear contoured nozzles which may be considered intermediate to the more widely studied smooth contraction and orifice nozzles. A high resolution particle image velocimetry was used to conduct detailed velocity measurements in the near and intermediate regions. It was observed that the lengths of the potential cores and the growth rates of turbulence intensities on the jet centerline are comparable with those of the orifice jets. The results indicate that the decay and spreading rates are lower than reported for orifice jets but higher than results for smooth contoured jets. The jets issuing from the elliptic and rectangular nozzles have the best mixing performance while the least effective mixing was observed in the star jet. The distributions of the Reynolds stresses and turbulent diffusion clearly showed that turbulent transport phenomena are quite sensitive to nozzle geometry. Due to the specific shape of triangular and daisy jets, the profiles of mean velocity and turbulent quantities are close to each other in their minor and major planes while in the elliptic and rectangular jets are considerably different. They also exhibit more isotropic behavior compared to the elliptic and rectangular jets. In spite of significant effects of nozzle geometry on mean velocity and turbulent quantities, the integral length scales are independent of changes in nozzle geometry.  相似文献   

19.
Minimizing the stress concentration around holes in uniaxially loaded finite plates is an important consideration in engineering design. One method for reducing the stress concentration around a central circular hole in a uniaxially loaded plate is to introduce smaller auxiliary holes on either side of the original hole to help smooth the flow of the tensile principal-stress trajectories past the original hole. This method has been demonstrated by Heywood and systematically studied by Erickson and Riley. Erickson and Riley show that for a central-hole diameter-to-plate width ratio of 0.222, the maximum stress reduction is up to 16 percent. In recent work, Durelliet al. show that the stress concentrations around holes in uniaxially loaded plates can be minimized by changing the hole shape itself till an optimum hole profile with constant stress values respectively on the tensile and compressive segments of the hole boundary is reached. By this technique the maximum stress reduction obtained for the above case is up to 20 percent. In the present work, starting with the optimum sizes and locations of central and auxiliary circular holes for a finite plate given by Erickson and Riley, a systematic study of the hole-shape optimization is undertaken. A two-dimensional photoelastic method is used. For a central-hole diameter-to-plate width ratio of 0.222, the reduction in stress-concentration factor obtained after hole-shape optimization is about 30 percent. It is also shown that it is possible to introduce the ‘equivalent ellipse’ concept for optimized holes.  相似文献   

20.
A laser anemometer has been used to study the developing flow both upstream and downstream from the entry plane in a re-entrant tube geometry. A 0.75% polyacrylamide/water solution was used and Reynolds numbers (based on wall conditions in the fully developed downstream flow) in the range 100–500 were obtained in 1.82-cm and 2.40-cm-diameter tubes.The shear stress-shear rate relationship for the fluid was measured using a cone and plate geometry in conjunction with a Weissenberg rheogoniometer. Theoretical fully developed velocity profiles were calculated numerically from these measurements. The measured fully developed velocity profiles were found to be in excellent agreement with those calculated.Velocity profiles measured at the tube entry plane showed the pronounced wall region distortion typically predicted by recent numerical solutions of the flow of purely-viscous fluids through an abrupt tube contraction.It was found that the major velocity rearrangements were achieved within only a few diameters (both upstream and downstream) of the entry plane. In particular, the velocity distribution near the tube wall varied negligibly over the relatively longer distance (many diameters) that it took for the centreline velocity to achieve its fully developed value. Entry lengths were found to be only about half those for purely-viscous fluids.Calculation of the time of flight along the central streamline confirmed that the major rearrangements of velocity suffered by the fluid occurred over a relatively short time period. This indicates that hereditary integral constitutive equations may have to be used in theoretical analyses of this type of flow situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号