共查询到20条相似文献,搜索用时 15 毫秒
1.
Laurence Gury-Paquet Antoine Millon Fatima Salami Alexandru Cernicanu Jean-Yves Scoazec Philippe Douek Loïc Boussel 《Magnetic resonance imaging》2012
Purpose
To assess the sensitivity and specificity of intra-plaque hemorrhage (IPH), large lipid-rich necrotic core (LR-NC) and ulceration or cap rupture (UCR) for symptomatic carotid plaque characterization and to evaluate a new imaging score [Hemorrhage, Ulceration or cap rupture, Lipid-rich necrotic Core (HULC) score based on the sum of presence/absence of IPH, UCR and LR-NC; range 0–3] for assessment of recently symptomatic carotid plaques.Material and methods
Twenty-seven recently symptomatic (< 8 weeks) and 36 asymptomatic patients with a carotid plaque thicker than 2 mm were prospectively imaged on a 3-T magnetic resonance (MR) system using high-resolution, multi-contrast MR sequences. Prior to analysis, all images were reviewed to assess image quality of each sequence. Sensitivity and specificity of IPH, LR-NC, UCR and HULC scores were calculated.Results
Fifty-one patients were analyzed (26 symptomatic carotids and 67 asymptomatic carotids) after exclusion of studies with poor image quality. Sensitivity and specificity for symptomatic carotid plaque was, respectively, 46.1% and 97% for IPH, 84.6% and 73.1% for UCR and 80.7% and 76.1% for LR-NC. A HULC score of 2 or more showed a sensitivity of 73% and a specificity of 92.5%.Conclusion
At 3 T, intra-plaque hemorrhage is the most specific criterion to characterize symptomatic carotid plaque. The HULC score offers the best compromise between sensitivity and specificity. 相似文献2.
Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide 总被引:2,自引:0,他引:2
Priest AN Ittrich H Jahntz CL Kooijman H Weber C Adam G 《Magnetic resonance imaging》2006,24(10):1287-1293
This study aims to investigate the uptake of the experimental ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agent DDM43/34 (Schering AG, Berlin, Germany) by aortic atherosclerotic plaques using magnetic resonance imaging (MRI) at 3 T. Six Watanabe heritable hyperlipidemic rabbits were injected with USPIO at doses of 0.1–1.0 mmol/kg Fe. Parasagittal magnetic resonance angiography (MRA) scans were acquired using 3D gradient-echo sequences before and after USPIO administration, then again after 6 h, 1 day, 2 days and 5 days. At later time points, when the USPIO concentration was too low to enhance blood signal, additional MRA scans were acquired during the infusion of gadopentate dimeglumine (Magnevist; Schering AG). In the images, widespread susceptibility artifacts demonstrated readily detectable USPIO uptake in the liver, bone marrow and lymphatic vessels. Surprisingly, however, no such effects could be associated specifically with the aortic vessel wall, in contrast to previous studies that showed strong uptake with similar pulse sequences. Histological analysis was performed on aortic slices from two animals, demonstrating that aortic plaques were active but showed very little USPIO uptake, consistent with MRI findings. We conclude that, despite the exciting potential of plaque detection using USPIO, some caution is advised since the absence of susceptibility effects does not necessarily imply the absence of plaque, even at 3 T, which offers increased sensitivity to susceptibility. Future work will investigate the dependence of such results on stage of plaque development, magnetic field strength and choice of contrast agent. 相似文献
3.
MRI contrast-dose relationship of manganese(III)tetra(4-sulfonatophenyl) porphyrin with human xenograft tumors in nude mice at 2.0 T 总被引:1,自引:0,他引:1
David A. Place Patrick J. Faustino Kirsten K. Berghmans Peter C.M. van Zijl A.Scott Chesnick Jack S. Cohen 《Magnetic resonance imaging》1992,10(6):919-928
Previously we reported that Mn(III)tetra(4-sulfonatophenyl) porphyrin, MnTPPS4, is a contrast agent which can effectively enhance tumor detection by MRI. By imaging 30 additional athymic nude mice bearing subcutaneous MCF-7 WT human breast carcinoma xenografts, we have extended dose-contrast relationships over a wide range of intraperitoneal (IP) doses ranging from 0.025 to 0.50 mmol/kg. The benefits of IP injection are higher possible doses on a volume basis and a reduction in toxicity versus IV administration. Full coronal cross-section images have been obtained on a 2-T spectrometer. Although individual tumor masses displayed different distribution patterns, reflective of their internal morphology, single doses of 0.10 mmol/kg or greater were necessary to produce a detectable effect. At a dose of 0.50 mmol/kg, marked enhancement was produced. Multiple small dosages administered over the course of several days before imaging did not produce increased enhancement. Preliminary results on the new porphyrin derivative, MnTPPS3, indicate that the ratio of the toxic dose to the effective dose may be adjustable to render this class of agents clinically useful. 相似文献
4.
Sakellarios AI Stefanou K Siogkas P Tsakanikas VD Bourantas CV Athanasiou L Exarchos TP Fotiou E Naka KK Papafaklis MI Patterson AJ Young VE Gillard JH Michalis LK Fotiadis DI 《Magnetic resonance imaging》2012,30(8):1068-1082
In this study, we present a novel methodology that allows reliable segmentation of the magnetic resonance images (MRIs) for accurate fully automated three-dimensional (3D) reconstruction of the carotid arteries and semiautomated characterization of plaque type. Our approach uses active contours to detect the luminal borders in the time-of-flight images and the outer vessel wall borders in the T(1)-weighted images. The methodology incorporates the connecting components theory for the automated identification of the bifurcation region and a knowledge-based algorithm for the accurate characterization of the plaque components. The proposed segmentation method was validated in randomly selected MRI frames analyzed offline by two expert observers. The interobserver variability of the method for the lumen and outer vessel wall was -1.60%±6.70% and 0.56%±6.28%, respectively, while the Williams Index for all metrics was close to unity. The methodology implemented to identify the composition of the plaque was also validated in 591 images acquired from 24 patients. The obtained Cohen's k was 0.68 (0.60-0.76) for lipid plaques, while the time needed to process an MRI sequence for 3D reconstruction was only 30 s. The obtained results indicate that the proposed methodology allows reliable and automated detection of the luminal and vessel wall borders and fast and accurate characterization of plaque type in carotid MRI sequences. These features render the currently presented methodology a useful tool in the clinical and research arena. 相似文献
5.
Jean-Loïc Rose Alain Lalande Olivier Bouchot El-Bey Bourennane Paul M. Walker Patricia Ugolini Chantal Revol-Muller Raymond Cartier François Brunotte 《Magnetic resonance imaging》2010
Magnetic resonance imaging (MRI) is particularly well adapted to the evaluation of aortic distensibility. The calculation of this parameter, based on the change in vessel cross-sectional area per unit change in blood pressure, requires precise delineation of the aortic wall on a series of cine-MR images. Firstly, the study consisted in validating a new automatic method to assess aortic elasticity. Secondly, aortic distensibility was studied for the ascending and descending thoracic aortas in 26 healthy subjects. Two homogeneous groups were available to evaluate the influence of sex and age (with an age limit value of 35 years). The automatic postprocessing method proved to be robust and reliable enough to automatically determine aortic distensibility, even on artefacted images. In the 26 healthy volunteers, a marked decrease in distensibility appears with age, although this decrease is only significant for the ascending aorta (8.97±2.69 10−3 mmHg−1 vs. 5.97±2.02 10−3 mmHg−1). Women have a higher aortic distensibility than men but only significantly at the level of the descending aorta (7.20±1.61 10−3 mmHg−1 vs. 5.05±2.40 10−3 mmHg−1). Through our automatic contouring method, the aortic distensibility from routine cine-MRI has been studied on a healthy subject population providing reference values of aortic stiffness. The aortic distensibility calculation shows that age and sex are causes of aortic stiffness variations in healthy subjects. 相似文献
6.
An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence (IR FSPGR) on a 3-T scanner for carotid plaque imaging is described. It offers clear blood and fat signal suppression at the carotid artery bifurcation and highlights the regions of carotid plaque affected by hemorrhage at 3 T with high contrast and contrast-to-noise ratio compared with other sequences. It can potentially be used to replace the more traditional noncontrast T1-weighted 2D black-blood imaging for hemorrhage detection and offers additional benefits of high-resolution 3D volumetric visualization. 相似文献
7.
Chen X Astary GW Sepulveda H Mareci TH Sarntinoranont M 《Magnetic resonance imaging》2008,26(10):1433-1441
Convection-enhanced delivery (CED), that is, direct tissue infusion, has emerged as a promising local drug delivery method for treating diseases of the nervous system. Determination of the spatial distribution of therapeutic agents after infusion is important in evaluating the efficacy of treatment, optimizing infusion protocols and improving the understanding of drug pharmacokinetics. In this study, we provide a methodology to determine the concentration distribution of Gd-labeled tracers during infusion using contrast-enhanced magnetic resonance imaging (MRI). To the best of our knowledge, MR studies that quantify concentration profiles for CED have not been previously reported. The methodology utilizes intrinsic material properties (T1 and R1) and reduces the effect of instrumental factors (e.g., inhomogeneity of MR detection field). As a methodology investigation, this study used an agarose hydrogel phantom as a tissue substitute for infusion. An 11.1-T magnet system was used to image infusion of Gd-DTPA-labeled albumin (Gd-albumin) into the hydrogel. By using data from preliminary scans, Gd-albumin distribution was determined from the signal intensity of the MR images. As a validation test, MR-derived concentration profiles were found comparable to both results measured directly using quantitative optical imaging and results from a computational transport model in porous media. In future studies, the developed methodology will be used to quantitatively monitor the distribution of Gd tracer following infusion directly into tissues. 相似文献
8.
The purpose of this study was to demonstrate and evaluate the performance of real-time color-flow MRI at 3 T using variable-density spiral (VDS) phase contrast. Spiral phase contrast imaging was implemented within a flexible real-time interactive MRI system that provided continuous image reconstruction and an intuitive user interface. The pulse sequence consisted of a spectral-spatial excitation, bipolar gradient, spiral readout and gradient spoiler. VDSs were utilized to increase spatial and/or temporal resolution relative to uniform-density spirals (UDSs). Parameter choices were guided by specific applications. Sliding window reconstruction was used to achieve a maximum display rate of 40 frames/s. No breath-holding or gating was used. Our results demonstrated that real-time color-flow movies using UDS and VDS provided adequate visualization of intracardiac flow, carotid flow and proximal coronary flow in healthy volunteers. Average aortic outflow velocity measured at the aortic valve plane using VDS was 29.4% higher than that using UDS. Peak velocity measured in the common carotid artery using VDS was 9.8% higher than that using UDS. 相似文献
9.
M. Corti A. Lascialfari E. Micotti A. Castellano M. Donativi A. Quarta P.D. Cozzoli L. Manna T. Pellegrino C. Sangregorio 《Journal of magnetism and magnetic materials》2008,320(14):e320-e323
Novel systems based on colloidal magnetic nanocrystals (NCs), potentially useful as superparamagnetic (SP) contrast agents for magnetic resonance imaging (MRI) have been investigated. The NCs we have studied comprise organic-capped single-crystalline maghemite (γ-Fe2O3) cores possessing controlled sizes and shapes. We have comparatively examined spherical and tetrapod-like NCs, the latter being branched particles possessing four arms which depart out at tetrahedral angles from a central point. The as-synthesized NCs are passivated by hydrophobic surfactant molecules and thus are fully dispersible in nonpolar media only. The NCs have been made soluble in aqueous solution by applying a procedure based on the surface intercalation and coating with an amphiphilic polymer shell. NMR relaxivities R1 and R2 were compared with ENDOREM®, one of the standard commercial SP-MRI contrast agent. We found that the spherical NCs exhibit R1 and R2 relaxivities slightly lower than those of ENDOREM®, over the whole frequency range; on the contrary, tetrapods show relaxivities about one order of magnitude lower. The physical origin of such difference in relaxivities between tetrapod- and spheres-based nanostructures is under investigation and it is possibly related to different sources of the magnetic anisotropy. 相似文献
10.
Clustering strongly affects the transverse (T2) relaxation induced by superparamagnetic nanoparticles in magnetic resonance experiments. In this study, we used Monte Carlo simulations to investigate systematically the relationship between T2 values and the geometric parameters of nanoparticle clusters. We computed relaxation as a function of particle size, number of particles per cluster, interparticle distance, and cluster shape (compact vs. linear). We found that compact clusters induced relaxation equivalent to similarly sized single particles. For small particles, the shape and density of clusters had a significant effect on T2. In contrast, for larger particles, T2 relaxation was relatively independent of cluster geometry until interparticle distances within a cluster exceeded ten times the particle diameter. Results from our simulations suggest principles for the design of nanoparticle aggregation-based sensors for MRI. 相似文献
11.
D. Pouliquen R. Perdrisot A. Ermias S. Akoka P. Jallet J. J. Le Jeune 《Magnetic resonance imaging》1989,7(6):619-627
We have developed a new method of synthetizing superparamagnetic iron oxide nanoparticles, consisting in the modifications of Molday's method, which ensures high relaxivity (2.4 105 s−1·M−1·L), good chemical stability, singular biodistribution and a considerable safety margin. The ED (Efficace Dose) to LD50 ratio is
instead of
for Gd-DTPA. In order to develop a magnetite-delivery system to the liver we have incorporated the nanoparticles into biodegradable synthetic microcapsules. Encapsulated 59Fe oxide nanoparticles are injected into rats; in these conditions the sequestration is 9-fold greater in liver and 6 and 5 times lower in blood and carcase, respectively. This modification of the biodistribution enables the use of magnetite containing microcapsules at only 0.3 mg/kg iron to obtain an improved contrast in liver. 相似文献
12.
This study was to describe the synthesis of complexes of gadolinium diethylenetriaminepentaacetic acid conjugates of low-molecular-weight chitosan oligosaccharide Gd-DTPA-CSn (n = 6, 8, 11) as a new class of contrast agent as well as its magnetic property in a pilot magnetic resonance imaging. The efficacy of the contrast agent was assessed by measuring the longitudinal relaxivity (r1), FLASH imaging in phantoms in vitro and signal intensity in vivo of the rat abdominal axial imaging. The r1 of Gd-DTPA-CS11 was up to 11.65 mM− 1·s− 1, which was 3 times higher than that of the analogous MRI contrast agent Gd-DTPA in commercial use. In vivo MR images of rat obtained with Gd-DTPA-CS11 showed strong signal enhancement in liver and the vessels of the liver parenchyma during the extended period of time. The present study suggests that the new synthesized gadolinium complexes can be used as a new class of practical liver-specific MRI contrast agent because of its superior performance compared with Gd-DTPA. 相似文献
13.
Esin Ozturk-Isik Albert P. Chen Jason C. Crane Wei Bian Duan Xu Eric T. Han Susan M. Chang Daniel B. Vigneron Sarah J. Nelson 《Magnetic resonance imaging》2009,27(9):1249-1257
Purpose
The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.Methods
The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.Results
The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.Conclusion
The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. 相似文献14.
Hideyasu Kudo Tsutomu Inaoka Noriko Kitamura Tomoya Nakatsuka Shusuke Kasuya Rumiko Kasai Mitsuyuki Tozawa Koichi Nakagawa Hitoshi Terada 《Magnetic resonance imaging》2013,31(8):1309-1317
PurposeTo determine the clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal derangements of the knee joint at 3 T.Method and MaterialsThirty-four knees in 34 patients suspected of having internal derangements of the knee joint were included. Following standard 2D MRI protocol including sagittal PDWI, T1WI and T2*WI, coronal fat-suppressed PDWI, and axial fat-suppressed PDWI with 3-4 mm thicknesses, fat-suppressed and water-excitation PDWI using 3D FSE sequences with a variable flip angle technique with 0.6 mm thickness were obtained in coronal plane and the three major planes with 1 mm thickness (3D MRI) was reformatted. The standard 2D MRI protocol and reformatted 3D MRI protocol (three sagittal 2D sequence images plus 3D MRI) were independently analyzed by two radiologists concerning presence or absence of lesions in the menisci, cartilage, and ligament. Interobserver agreements in both the MRI protocols were assessed by weighted-kappa coefficients. Regarding diagnostic accuracy, areas under the receiver operating characteristic curves (Az values) of both the MRI protocols were compared.ResultsThirty-eight meniscal lesions, 39 cartilage lesions, and 20 ligamentous lesions were surgically detected. Excellent interobserver agreements (kappa = 0.91–0.98) were seen in both the MRI protocols, with a slightly better tendency in the reformatted 3D MRI protocol. Average Az values in detection of the meniscal, cartilage, and ligamentous lesions were significantly higher in the reformatted 3D MRI protocol than in the standard 2D MRI protocol (p < 0.01 or p < 0.001).ConclusionRoutine use of reformatted thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique may improve diagnostic accuracy and confidence in detection of internal derangements of the knee joint. 相似文献
15.
Masaaki Hori Harushi Mori Shigeki Aoki Osamu Abe Tomohiko Masumoto Satoshi Kunimatsu Kuni Ohtomo Hiroyuki Kabasawa Nobuyuki Shiraga Tsutomu Araki 《Magnetic resonance imaging》2010
Object
Although three-dimensional (3D), high-spatial resolution susceptibility-weighted imaging (SWI) appears to be valuable in the evaluation of central nervous system gliomas, several evaluation methods are proposed in the literature. The purpose of this study was to evaluate the use of 3D SWI for grading intracranial gliomas with various analysis methods.Materials and Methods
Twenty-three patients suspected of having gliomas participated in this study. SWI was performed in addition to conventional MR sequences. In 15 cases, post-gadolinium enhanced SWI was also obtained. Imaging evaluation criteria were conventional grade, hypointensity ratio in the tumor-dominant structure of hypointensity on SWI (hemorrhage or vascular structure) and presence of abnormal enhancement surrounding the tumor.Results
Mean grading scores of conventional grade showed no statistically significant difference among WHO grades. Mean grading scores of hypointensity ratios in the tumor were higher for WHO Grades 3 and 4 than for lower grade tumors (P=.05, Mann–Whitney U test). Hemorrhagic foci were more frequently seen in the higher grade tumor. Post-contrast susceptibility-weighted images of five of 11 WHO Grade 3 and 4 cases showed bright enhancement surrounding the tumor, suggesting a breakdown of the blood–brain barrier.Conclusions
SWI at 3 T may be a useful method to analyze the structural characteristics of gliomas and to evaluate pathology in vivo. Assessment of hypointensity ratios in the glioma was the most preferable method in grading glioma. However, more studies, specifically concerning a suitable method for image analysis, are needed to establish SWI at 3 T as a useful tool in clinical routine. 相似文献16.
Mohmmadzadeh M Baxan N Badilita V Kratt K Weber H Korvink JG Wallrabe U Hennig J von Elverfeldt D 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2011,208(1):20-26
We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an automatic wire-bonder. We present 15 μm isotropic resolution 3D B(0) maps performed using the phase difference method. The resulting B(0) variation in the range of [-0.07 ppm to -0.157 ppm] around the coil center, compares favorably with the 0.5 ppm limit accepted for MR microscopy. 3D B(1)(unit) maps of 40 μm isotropic voxel size were acquired according to the extended multi flip angle (ExMFA) method. The results demonstrate that the characterized microcoil provides a high and uniform sensitivity distribution around its center (B(1)(unit) = 3.4 mT/A ± 3.86%) which is in agreement with the corresponding 1D theoretical data computed along the coil axis. The 3D SNR maps reveal a rather uniform signal distribution around the coil center with a mean value of 53.69 ± 19%, in good agreement with the analytical 1D data along coil axis in the axial slice. Finally, we prove the microcoil capabilities for MR microscopy by imaging Eremosphaera viridis cells with 18 μm isotropic resolution. 相似文献
17.
Regional cerebral blood volume (rCBV) provides valuable information about the nature and progress of diseases of the central nervous system. While relative rCBV maps can be derived directly from dynamic susceptibility contrast data, the arterial input function (AIF) has to be measured for absolute rCBV quantification. For determination of the AIF pixels located completely within a feeding artery must be selected. However, by using a region-of-interest (ROI) based selection some confounding effects can occur, especially if single shot echo planar imaging (EPI) with low spatial resolution is used. In this study we analyzed the influence of partial volume effects and spatial misregistration due to frequency shifts induced by paramagnetic contrast agents. We analyzed AIFs from the internal carotid artery (ICA), the vertebral artery (VA) and the middle cerebral artery (MCA) using gamma variate function based parameterization. The concentration time curves (CTC) of several pixels which were selected on the basis of strong signal drop appeared distorted during the bolus passage. Moreover, the amplitudes of input functions derived from the MCA were smaller by a factor of three as compared to those of the ICA and VA. Simulations revealed that these effects can be attributed to a spatial shift of the vessel along phase-encoding direction during the passage of the bolus. We therefore developed a procedure for a pixel selection based on cluster analysis which classifies pixels according to the parameters of the fitted gamma variate functions. This approach accounted for misregistration of the vessel and yielded very consistent results for a group of normal subjects. 相似文献
18.
Muftuler LT Gulsen G Sezen KD Nalcioglu O 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2002,155(1):39-44
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. 相似文献
19.
Williams LA DeVito TJ Winter JD Orr TN Thompson RT Gelman N 《Magnetic resonance imaging》2007,25(8):1162-1170
Three-dimensional (3D) magnetic resonance imaging (MRI) has shown great potential for studying the impact of prematurity and pathology on brain development. We have investigated the potential of optimized T1-weighted 3D magnetization-prepared rapid gradient-echo imaging (MP-RAGE) for obtaining contrast between white matter (WM) and gray matter (GM) in neonates at 3 T. Using numerical simulations, we predicted that the inversion time (TI) for obtaining strongest contrast at 3 T is approximately 2 s for neonates, whereas for adults, this value is approximately 1.3 s. The optimal neonatal TI value was found to be insensitive to reasonable variations of the assumed T1 relaxation times. The maximum theoretical contrast for neonates was found to be approximately one third of that for adults. Using the optimized TI values, MP-RAGE images were obtained from seven neonates and seven adults at 3 T, and the contrast-to-noise ratio (CNR) was measured for WM versus five GM regions. Compared to adults, neonates exhibited lower CNR between cortical GM and WM and showed a different pattern of regional variation in CNR. These results emphasize the importance of sequence optimization specifically for neonates and demonstrate the challenge in obtaining strong contrast in neonatal brain with T1-weighted 3D imaging. 相似文献
20.
This study aimed to utilise a tissue mimicking material (TMM) in order to embed in vitro carotid plaque tissue so that its acoustic properties could be assessed. Here, an International Electrotechnical Commission (IEC) agar-based TMM was adapted to a clear gel by removal of the particulates. This clear TMM was measured with sound speed at 1540 ms−1 and an attenuation coefficient of 0.15 dB cm−1 MHz−1. Composite sound speed was then measured through the embedded material using a scanning acoustic microscope (SAM). Both broadband reflection and transmission techniques were performed on each plaque specimen in order to ensure the consistency of the measurement of sound speed, both at 21 °C and 37 °C. The plaque was measured at two temperatures to investigate any effect on the lipid content of the plaque. The contour maps from its associated attenuation plots were used to match the speed data to the photographic mask of the plaque outline. This physical matching was then used to derive the sound speed from the percentage composition seen in the histological data by solution of simultaneous equations. Individual speed values for five plaque components were derived; TMM, elastin, fibrous/collagen, calcification and lipid. The results for derived sound speed in the TMM were consistently close to the expected value of soft tissue, 1540 ms−1. The fibrous tissue showed a mean value of 1584 ms−1 at 37 °C. The derived sound speeds for elastic and lipid exhibited large inter-quartile ranges. The calcification had higher sound speed than the other plaque components at 1760–2000 ms−1. The limitations here lay in the difficulties in the matching process caused by the inhomogeneity of the plaque material and shrinkage during the histological process. Future work may concentrate on more homogeneous material in order to derive sound speed data for separate components. Nevertheless, this study increases the known data ranges of the individual components within a plaque. This information may be used help to assess the mechanical properties and structural integrity and its associated vulnerability or risk of embolization in future diagnostic ultrasound techniques. 相似文献