首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic and laser characteristics of the self-Q-switched Cr,Yb:YAG laser were studied by solving the coupled rate equations; the effects of the pump rate, reflectivity of the output couplers and the concentrations of the saturable absorbers on the laser performance were investigated in detail and the numerical simulation of the Cr,Yb:YAG lasers was in good agreement with the experimental data. Better laser performance of the Cr,Yb:YAG self-Q-switched laser can be obtained by using high pump rate, higher concentration of the saturable absorber and suitable reflectivity of the output coupler according to our numerical calculations. A typical self-Q-switched laser pulse of 269.5 J pulse energy with 319 ps pulse width (FWHM) at a repetition rate of 3.1 kHz can be obtained with a monolithic laser cavity, which results in 843.5 kW peak power.  相似文献   

2.
二极管泵浦双掺杂YAG微片自调Q激光器   总被引:7,自引:3,他引:4       下载免费PDF全文
 利用激光二极管泵浦双掺杂YAG微片晶体,在连续泵浦时获得了重复频率为2.78kHz,脉冲宽度为6ns的自调Q激光输出。并通过预泵浦加脉冲调制电流的方法,实现可控重复率的自调Q脉冲输出。与外腔式自调Q微片激光器相比,这种一体化微片激光器具有更高的转换效率、更窄的输出脉冲宽度和更高的重复频率,同时结构更为简单紧凑,易于调整。  相似文献   

3.
LD抽运Cr4+∶YAG高重复率被动调Q Nd∶YVO4激光器   总被引:6,自引:5,他引:1  
王加贤  庄鑫巍 《光子学报》2006,35(4):494-498
采用Cr4+∶YAG晶体作为可饱和吸收体,实现连续激光二极管(LD)端面抽运的Nd∶YVO4激光器的高重复率被动调Q.在注入抽运功率为8.8 W时,得到重复频率23.8 kHz、平均功率1.21 W的调Q脉冲序列;每个脉冲能量为51 μJ、脉宽为25 ns、峰值功率达到2.03 kW.实验上研究了脉冲重复频率、平均输出功率、脉冲宽度、单脉冲能量与抽运功率、输出镜透过率的关系.实验结果表明,当抽运功率较大时,脉冲重复频率和输出平均功率随着抽运功率的增加而减小,对此进行了合理的理论解释.  相似文献   

4.
Dong J  Deng P  Lu Y  Zhang Y  Liu Y  Xu J  Chen W 《Optics letters》2000,25(15):1101-1103
By use of a laser diode as a pump source, a self-Q-switched laser from a Cr, Nd:YAG crystal is demonstrated. The output Q-switched traces are very stable, the threshold pump power is 3.5 W, the pulse duration is 50 ns, and the slope efficiency is as high as 20%. In addition, the pulse width remains constant while the pulse repetition rate varies with pump power.  相似文献   

5.
A LD-pumped self-Q-switched 946 nm laser by using a co-doped Cr,Nd:YAG crystal as a gain medium as well as a saturable absorber is studied. The 946 nm self-Q-switched rate equations of co-doped crystal are solved numerically by Runge–Kutta method directly. The important parameters of lasers, such as average output power, threshold pump power, pulse width, pulses repetition rate, and optimal transmission of output coupler are obtained numerically. Experimentally, the maximum average output power up to 2.61 W, corresponding to a slope efficiency of 23.43%, was obtained in a simple and compact linear cavity. The optical-to-optical efficiency is 17.3% and the peak power is 7.57 kW with repetition rate of 23.78 kHz and pulse width of 14.5 ns. In the experiments, a high-quality fundamental transverse mode can be preserved in a large range of incident pump power. The numerical results of the 946 nm self-Q-switched Cr,Nd:YAG laser are in good agreement with the experimental results.  相似文献   

6.
The high efficient laser performance of self-Q-switched laser in the co-doped Cr4+,Nd3+:YAG microchip with 1.8 mm thickness was demonstrated. The slope efficiency is varied with the reflectivity of output coupler at 1064 nm, and the highest slope efficiency of 26% was obtained for 95% reflectivity of output coupler at 1064 nm. The pulse width, the single pulse energy and the pulse repetition rate for different reflectivity of the output couplers were measured, and the experimental results agree with the numerical calculations of the passively Q-switched rate equations. This can lead to develop the diode laser pumped monolithic self-Q-switched solid-state microchip lasers, especially for the intracavity frequency-doubled solid-state microchip lasers.  相似文献   

7.
We design an efficient passively Q-switched laser using a composite YAG/Yb:YAG crystal as the laser gain medium and a Cr4+:YAG crystal as a saturable absorber. We obtain an average output power of 1.81 W in 1030 nm laser at an absorbed pump power of 4.8 W, corresponding to an optical-to-optical efficiency of 37.7% and a slope efficiency of 47.3%. The pulsed laser has a repetition rate of about 28.6 kHz and a pulse width of 15.8 ns, with the highest peak power of 4 kW. In addition, using a LBO as the intracavity frequency doubler, we obtain a maximum power of 246 mW in 515 nm pulsed laser at an absorbed pump power of 3.8 W.  相似文献   

8.
The Runge-Kutta method is used to solve numerically the rate equations of quasi-three-level passive Q-switched laser directly without any approximate treatment of these differential equations. The 946 nm self-Q-switched Cr,Nd:YAG laser is chosen for example to describe the details. The time-dependence of intra-cavity photon density is obtained and its detailed real-time changing process is reproduced in numerical solution. The curves of laser output parameters such as average output power, pulse width, repetition rate, pulse energy and peak power changing with different cavity conditions such as pump power, output coupler reflectivity, Cr,Nd:YAG crystal length, Nd3+ ion and Cr4+ ion concentrations are simulated according to direct numerical solution rather than analytical expressions. This direct numerical simulation method can be widely used to describe and optimize the quasi-three-level passive Q-switched laser theoretically.  相似文献   

9.
J. Ma  Y. Xu  P. Zhao  D. Liu 《Laser Physics》2010,20(8):1703-1706
Using a V3+:YAG saturable absorber, we realize the running of a laser-diode end-pumped passively Q-switched intracavity-frequency-doubling Nd:GdVO4/KTP red laser. Under the absorbed pump power of 9.45 W and with V3+:YAG initial transmission T 0 = 94%, the obtained average output power and pulse width were 610 mW and 15.09 ns with the repetition rate of 12.2 kHz, corresponding to the single pulse energy 50 μJ and the pulse peak power 3.34 kW.  相似文献   

10.
This paper reported a passively Q-switched green laser of LD pumped linear cavity structure by using Nd:YAG/Cr4+:YAG composite crystal and the type II phase matching KTP crystal. The dependence of average output power, pulse width and pulse repetition rate on pump power at different initial transmissions of Cr4+:YAG were measured and analyzed. With Cr4+:YAG of 80% initial transmission, under pump power of 13.97 W, the output average power is up to 681 mW, with pulse width of 200 ns and pulse repetition rate of 9.1 kHz. The laser operates in a fundamental mode.  相似文献   

11.
The realization of high repetition rate passively Q-switched monolithic microlaser is a challenge since a decade. To achieve this goal, we report here on the first passively Q-switched diode-pumped microchip laser based on the association of a Nd:GdVO4 crystal and a Cr4+:YAG saturable absorber. The monolithic design consists of 1 mm long 1% doped Nd:GdVO4 optically contacted on a 0.4 mm long Cr4+:YAG leading to a plano-plano cavity. A repetition rate as high as 85 kHz is achieved. The average output power is approximately 400 mW for 2.2 W of absorbed pump power and the pulse length is 1.1 ns.  相似文献   

12.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

13.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

14.
郑权  赵岭 《光子学报》2002,31(1):60
报道了LD泵浦的Nd∶YAG/KTP/Cr∶YAG结构被动调Q绿光激光器.当注入泵浦功率为750mW时,获得了平均功率38mW,脉冲宽度14.7ns,重复频率20.4kHz,峰值功率126.6W的调Q绿激光输出.  相似文献   

15.
姚杰  王勇刚  李永放 《应用光学》2018,39(2):279-283
利用WS2的可饱和吸收特性,在激光二极管侧面抽运Nd:YAG固体激光器Z型腔结构中分别实现了被动调Q和被动调Q锁模运转。实验表明:当泵浦电流为9.5 A时,开始启动调Q运转,当泵浦电流大于9.8 A时,调Q激光脉冲趋于稳定。当泵浦电流为12.8 A时,被动调Q输出的最大平均功率为466 mW,最窄脉冲宽度为3.205 μs,对应的重复频率为71.70 kHz,此时最大单脉冲能量为6.5 μJ。当泵浦电流达到13.4 A时,激光器实现调Q锁模运转。调Q锁模的最高输出功率为590 mW,调Q包络频率为71.98 kHz,单个调Q包络内的脉冲串重复频率123.1 MHz,每个调Q包络中包含369个脉冲,单脉冲能量为22.2 nJ。结果表明WS2材料可以作为可饱和吸收体用于固体激光器中。  相似文献   

16.
利用新型实用的晶体材料V∶YAG作为被动调Q元件,实现了激光二极管泵浦Nd∶YVO4的1.34 μm激光谱线调Q运转.研究了饱和吸收体小信号透过率对激光稳定性的影响,得出使用小信号透过率T0小的V∶YAG可使激光脉冲能量和重复频率稳定的结论.在1.6 W的泵浦条件下,T0为96%、89%和85%时,4 h脉冲能量和重复频率稳定性分别为15%、10%和5%.使用T0为85%的V∶YAG,获得了平均功率输出功率96 mW,脉宽8.8 ns,重复频率25 kHz,峰值功率436 W,脉冲能量3.84 μJ的实验结果.  相似文献   

17.
We design a passively Q-switched intracavity frequency-doubled 532 nm laser using Nd:YAG/Cr4+:YAG composite crystal and type II phase matching KTP crystal. Under 13.97 W pump power, the average output power of the laser elaborated is up to 681 mW, with 200 ns pulse width and 9.1 kHz pulse repetition rate.  相似文献   

18.
J. Ma  Y. Zhai  D. Li  C. Fang  D. Liu 《Laser Physics》2011,21(4):680-683
By simultaneously using both a V3+:YAG and a Co2+:LaMgAl11O19 saturable absorber in the cavity, for the first time to our knowledge, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The dependence of pulse width, pulse repetition rate, pulse energy and peak power on the incident pump power are measured. Under the absorbed pump power of 8.59 W, both the pulse temporal profile of the passive double-switching with the pulse width of 25.29 ns, and the passive single-switching just using V3+:YAG with pulse width of 30.46 ns are obtained. The pulse duration is partly compressed in contrast to the purely passively Q-switched laser with V3+:YAG.  相似文献   

19.
The character of a diode-pumped passively Q-switched Nd:GdVO4/V3+:YAG 912 nm laser was demonstrated for the first time to our knowledge. With an absorbed pump power of 7.4 W, an average output power of 360 mW with a Q-switched pulse width of 328 ns at a pulse repetition rate of 163 kHz was obtained. The Q-switching efficiency was found to be 32.7%. Our work further indicated V3+:YAG could be an effective fast passive Q-switch for 0.9 μm radiation.  相似文献   

20.
A compact diode-end-pumped passively Q-switched intra-cavity frequency doubled Nd:YAG/Cr4+:YAG composite crystal laser was demonstrated. The pulsed laser at 532 nm was produced and the dependence of the average out power, pulse width and pulse repetition rate on incident pump power were measured. Under the pump power of 14 W, the minimum pulse width of 3.5 ns with repetition rate of 27.5 kHz was obtained, corresponding single-pulse energy of 18 μJ and peak power of 5.3 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号