首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic char- acteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimen- tal setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments.  相似文献   

2.
An elastomeric gel is a mixture of a polymer network and a solvent.In response to changes in mechanical forces and in the chemical potential of the solvent in the environment,the gel evolves by two concurrent molecular processes:the conformational change of the network,and the migration of the solvent.The two processes result in viscoelasticity and poroelasticity,and are characterized by two material-specific properties:the time of viscoelastic relaxation and the effective diffusivity of the solvent through the network.The two properties define a materialspecific length.The material-specific time and length enable us to discuss macroscopic observations made over different lengths and times,and identify limiting conditions in which viscoelastic and poroelastic relaxations have either completed or yet started.We formulate a model of homogeneous deformation,and use several examples to illustrate viscoelasticity-limited solvent migration,where the migration of the solvent is pronounced,but the size of the gel is so small that the rate of change is limited by viscoelasticity.We further describe a theory that evolves a gel through inhomogeneous states.Both infinitesimal and finite deformation are considered.  相似文献   

3.
We explore the Mode I fracture toughness of a polymer gel containing a semi-infinite, growing crack. First, an expression is derived for the energy release rate within the linearized, small-strain setting. This expression reveals a crack tip velocity-independent toughening that stems from the poroelastic nature of polymer gels. Then, we establish a poroelastic cohesive zone model that allows us to describe the micromechanics of fracture in gels by identifying the role of solvent pressure in promoting poroelastic toughening. We evaluate the enhancement in the effective fracture toughness through asymptotic analysis. We confirm our theoretical findings by means of numerical simulations concerning the case of a steadily propagating crack. In broad terms, our results explain the role of poroelasticity and of the processes occurring in the fracturing region in promoting toughening of polymer gels.  相似文献   

4.
A gel, an aggregate of polymers with solvents, has dual attributes of solid and liquid as solvent migrates in and out of the polymer network. Indentation has recently been used to characterize the mechanical properties of gels. This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis. It is found that large deformation significantly affects the interpretation of the experimental observations and the classical relation between indentation force and depth has limitations for large deformation. The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation. Based on these observations, this paper proposes an alternative approach to measure the mechanical properties of gels, namely, uniaxial compression experiment.  相似文献   

5.
基于广义热弹性理论,结合达西定律,对Biot波动方程进行修正,研究了一个受到荷载作用的多孔饱和地基的热-水-力多场耦合动态响应问题。建立了多孔饱和地基在荷载作用下的热-水-力耦合模型及控制方程,该模型可退化为热弹性耦合模型。采用正则模态法求解,得到了问题的解析解,讨论了热-水-力耦合模型和热弹性耦合模型的区别,分析了荷载频率变化对地基中各物理量的影响。最终给出了无量纲的竖向位移、超孔隙水压力、竖向应力和温度等物理量的分布规律。  相似文献   

6.
Homogeneous and two-layer half-spaces consisting of an anisotropic elastic, isotropic viscoelastic, or poroelastic material are considered. The Kelvin–Voigt model and the model with the Abel kernel are used as models of the viscoelastic material; the poroelastic material is studied within the framework of the model of the compressible Biot material. The case where the half-space contains a cavity is also considered. Propagation of surface waves is studied by the boundary element method. The numerical solution involves the method of collocations for a regularized boundary integral equation.  相似文献   

7.
A linear dynamic model of fully saturated porous media with local (either microscopic or mesoscopic) heterogeneities is developed within the context of Biot’s theory of poroelasticity. Viscoporoelastic behavior associated with local fluid flow is characterized by the notion of the dynamic compatibility condition on the interface between the solid and the fluid. Complex, frequency-dependent material parameters characterizing the viscoporoelasticity are derived. The complex properties can be obtained through determining the quasi-static poroelastic parameters, the properties of individual constituents, and the relaxation time of the dynamic compatibility condition on the interface. Relationships among various quasi-static poroelastic parameters are developed. It is shown that local fluid flow mechanism is significant only in the porous media with local heterogeneities. The relaxation time of the compatibility condition on the interface depends upon the details of local structure of porous media that control local fluid pressure diffusion. The new model is used to describe the velocity dispersion and attenuation in fully saturated porous media. The proposed model provides a theoretical framework to simulate the acoustical behavior of fully saturated porous media over a wide range of frequencies without making any explicit assumption about the structure of local heterogeneities.  相似文献   

8.
An important class of gels are those composed of a polymer network and fluid solvent. The mechanical and rheological properties of these two-fluid gels can change dramatically in response to temperature, stress, and chemical stimulus. Because of their adaptivity, these gels are important in many biological systems, e.g. gels make up the cytoplasm of cells and the mucus in the respiratory and digestive systems, and they are involved in the formation of blood clots. In this study we consider a mathematical model for gels that treats the network phase as a viscoelastic fluid with spatially and temporally varying material parameters and treats the solvent phase as a viscous Newtonian fluid. The dynamics are governed by a coupled system of time-dependent partial differential equations which consist of transport equations for the two phases, constitutive equations for the viscoelastic stresses, two coupled momentum equations for the velocity fields of the two fluids, and a volume-averaged incompressibility constraint. We present a numerical method based on a staggered grid, second order finite-difference discretization of the momentum equations and a high-resolution unsplit Godunov method for the transport equations. The momentum and incompressibility equations are solved in a coupled manner with the Generalized Minimum Residual (GMRES) method using a multigrid preconditioner based on box-relaxation. We present results on the accuracy and robustness of the method together with an illustration of the interesting behavior of this gel model for the four-roll mill problem.  相似文献   

9.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

10.
不可压饱和多孔弹性梁、杆动力响应的数学模型   总被引:12,自引:6,他引:12  
杨骁  李丽 《固体力学学报》2006,27(2):159-166
基于多孔介质理论,首先建立了饱和多孔弹性杆件弯曲与轴向变形时动力响应的数学模型.其次,基于多孔弹性梁弯曲变形的数学模型,利用Laplace变换,分析了两端可渗透的饱和多孔弹性悬臂梁在自由端受阶梯载荷作用下的动静力响应,给出了梁弯曲时挠度、弯矩以及孔隙流体压力等效力偶等物理量随时间的响应曲线.发现不可压多孔弹性梁的拟静态响应亦存在Mandel-Cryer现象,多孔弹性梁的挠度具有与粘弹性梁挠度类似的蠕变特征,然而,其应力响应不同于粘弹性梁,随着时间的增加,梁拟静态响应的弯矩逐渐增加,并达到一个稳态值.这些结果有助于揭示植物根茎等力学行为的机理.  相似文献   

11.
We propose a model of complex poroelastic media with periodic or locally periodic structures observed at microscopic and mesoscopic scales. Using a two-level homogenization procedure, we derive a model coherent with the Biot continuum, describing effective properties of such a hierarchically structured poroelastic medium. The effective material coefficients can be computed using characteristic responses of the micro- and mesostructures which are solutions of local problems imposed in representative volume elements describing the poroelastic medium at the two levels of heterogeneity. In the paper, we discus various combinations of the interface between the micro- and mesoscopic porosities, influence of the fluid compressibility, or solid incompressibility. Gradient of porosity is accounted for when dealing with locally periodic structures. Derived formulae for computing the poroelastic material coefficients characterize not only the steady-state responses with static fluid, but are relevant also for quasistatic problems. The model is applicable in geology, or in tissue biomechanics, in particular for modeling canalicular-lacunar porosity of bone which can be characterized at several levels.  相似文献   

12.
Zakerzadeh  Rana  Zunino  Paolo 《Meccanica》2019,54(1-2):101-121

We study the effect of poroelasticity on fluid–structure interaction. More precisely, we analyze the role of fluid flow through a deformable porous matrix in the energy dissipation behavior of a poroelastic structure. For this purpose, we develop and use a nonlinear poroelastic computational model and apply it to the fluid–structure interaction simulations. We discretize the problem by means of the finite element method for the spatial approximation and using finite differences in time. The numerical discretization leads to a system of non-linear equations that are solved by Newton’s method. We adopt a moving mesh algorithm, based on the Arbitrary Lagrangian–Eulerian method to handle large deformations of the structure. To reduce the computational cost, the coupled problem of free fluid, porous media flow and solid mechanics is split among its components and solved using a partitioned approach. Numerical results show that the flow through the porous matrix is responsible for generating a hysteresis loop in the stress versus displacement diagrams of the poroelastic structure. The sensitivity of this effect with respect to the parameters of the problem is also analyzed.

  相似文献   

13.
不可压饱和多孔弹性简支梁的动力响应   总被引:1,自引:1,他引:0  
张燕  杨骁  李惠 《力学季刊》2006,27(3):427-433
在杆件弯曲小变形的假定下,考虑杆件的侧向变形因素,根据多孔介质理论,本文首先建立了不可压饱和多孔弹性梁弯曲变形时动力响应的控制方程。其次,基于所建立的控制微分方程,利用变量分离法,研究了两端可渗透的饱和多孔弹性简支梁在梁中间集中载荷作用下的动力响应,得到了不同物性参数下简支梁动态弯曲时挠度和孔隙流体压力等效力偶等随时间的响应曲线。研究发现由于孔隙流体和固相骨架的相互作用,不可压饱和多孔弹性梁挠度的动力响应具有粘性特征,同时,随着时间的增加,饱和多孔弹性梁的挠度、弯矩等最终趋于经典弹性梁的静挠度、弯矩,此时,孔隙流体压力为零,梁的固相骨架承担所有的外载荷。  相似文献   

14.
We perform numerical simulation of ultrasonic experiments on poroelastic samples, in which Biot's slow compressional wave had been observed. The simulation is performed using OASES modeling code, which allows to compute elastic wave fields in layered poroelastic media. Modeled were the experiments of Plona (1980), Rasolofosaon (1988), and our own measurements. In all the three situations, a good agreement between experiment and simulations has been observed. This further confirms the fact that Biot's theory of poroelasticity, on which the simulations were based, adequately describes the behavior of the porous materials under investigations at ultrasonic frequencies.  相似文献   

15.
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument com- bined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo-Hookean material model using finite element simulations.  相似文献   

16.
When cyclic loading is applied to poroelastic materials, a transient stage of interstitial fluid pressure occurs, preceding a steady state. In each stage, the fluid pressure exhibits a characteristic mechanical behavior. In this study, an analytical solution for fluid pressure in two-dimensional poroelastic materials, which is assumed to be isotropic, under cyclic axial and bending loading is presented, based on poroelasticity. The obtained analytical solution contains transient and steady-state responses. Both of these depend on three dimensionless parameters: the dimensionless stress coefficient; the dimensionless frequency; and, the axial-bending loading ratio. We focus particularly on the transient behavior of interstitial fluid pressure with changes in the dimensionless frequency and the axial-bending loading ratio. The transient properties, such as half-value period and contribution factor, depend largely on the dimensionless frequency and have peak values when its value is about 10. This suggests that, under these conditions, the transient response can significantly affect the mechanical behavior of poroelastic materials.  相似文献   

17.
Based on the three-dimensional Gurtin-type variational principle of the incompressible saturated porous media, a one-dimensional mathematical model for dynamics of the saturated poroelastic Timoshenko cantilever beam is established with two assumptions, i.e., the deformation satisfies the classical single phase Timoshenko beam and the movement of the pore fluid is only in the axial direction of the saturated poroelastic beam. Under some special cases, this mathematical model can be degenerated into the Euler-Bernoulli model, the Rayleigh model, and the shear model of the saturated poroelastic beam, respectively. The dynamic and quasi-static behaviors of a saturated poroelastic Timoshenko cantilever beam with an impermeable fixed end and a permeable free end subjected to a step load at its free end are analyzed by the Laplace transform. The variations of the deflections at the beam free end against time are shown in figures. The influences of the interaction coefficient between the pore fluid and the solid skeleton as well as the slenderness ratio of the beam on the dynamic/quasi-static performances of the beam are examined. It is shown that the quasi-static deflections of the saturated poroelastic beam possess a creep behavior similar to that of viscoelastic beams. In dynamic responses, with the increase of the slenderness ratio, the vibration periods and amplitudes of the deflections at the free end increase, and the time needed for deflections approaching to their stationary values also increases. Moreover, with the increase of the interaction coefficient, the vibrations of the beam deflections decay more strongly, and, eventually, the deflections of the saturated poroelastic beam converge to the static deflections of the classic single phase Timoshenko beam.  相似文献   

18.
The paper studies the problem of fluid flow and fluid shear stress in canaliculi when the osteon is subject to external mechanical loading and blood pressure oscillation. The single osteon is modeled as a saturated poroelastic cylinder. Solid skeleton is regarded as a poroelastic transversely isotropic material. To get near-realistic results, both the interstitial fluid and the solid matrix are regarded as compressible. Blood pressure oscillation in the Haverian canal is considered. Using the poroelasticity theory, an analytical solution of the pore fluid pressure is obtained. Assuming the fluid in canaliculi is incompressible, analytical solutions of fluid flow velocity and fluid shear stress with the Navier-Stokes equations of incompressible fluid are obtained. The effect of various parameters on the fluid flow velocity and fluid shear stress is studied.  相似文献   

19.
Deformation and stress from in-pore drying-induced crystallization of salt   总被引:3,自引:0,他引:3  
The deformation and the fracture of porous solids from internal crystallization of salt is explored in the framework of the thermodynamics of unsaturated brittle poroelasticity. In the first place the usual theory of crystal growth in confined conditions is further developed in order to include both the deformation and the drying of the porous solid. The thermodynamics reveals the existence of a dilation coefficient associated with the crystallization process, and provides a solute-crystal equilibrium condition which involves the relative humidity, the supersaturation, and the salt characteristics. This thermodynamic condition and the mechanical equilibrium of the solution-crystal interface combine to give the current crystallization pore radius. Upscaling this information at the macroscopic scale, and taking into account the salt mass supplied by the invading solution, the approach leads to a quantitative analysis of the role of the pore size distribution on the crystal growth under repeated imbibition-drying cycles. The deformation and the fracture of the porous solid from drying-induced crystallization are then considered in the context of brittle poroelasticity. The current unsaturated macroscopic poroelastic properties are upscaled from the microscopic elastic properties of the solid matrix and from the current liquid, crystal and gas saturations. The adoption of a fracture criterion based on the elastic energy that the solid matrix can ultimately store finally leads to the determination of how long a stone can resist repeated cycles of drying-induced crystallization of salt.  相似文献   

20.
The governing equations for the theory of anisotropic poroelastic materials with incompressible constituents undergoing small deformations are developed from the theory of anisotropic poroelastic materials without the constituent incompressibility constraint. The development of the constituent specific incompressibility constraint is accomplished by restricting the elastic constants rather than by introducing Lagrange multipliers, the conventional method. The advantage of the approach is insight into the nature of the elastic response that characterizes incompressible poroelasticity. An application of the theory to the unconfined compression of a circular porous disk is presented to illustrate the effects of compressibility vs. incompressibility and transverse isotropy vs. isotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号