首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pairing leads to superfluidity in ultracold atomic gases, but this pairing can be frustrated when a population imbalance is present between the pairing partners. Here we investigate how vortices in the fermionic superfluid are affected by imbalance. We show that the vortex core radius is increased by imbalance, accommodating excess component atoms. This has two intriguing consequences. Firstly, a small imbalance acts as a catalyst for vortex formation, decreasing the critical rotation frequency. Secondly, imbalanced gases near critical imbalance can exhibit rotationally induced superfluidity.  相似文献   

2.
Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950 s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s-and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s-and p-wave interactions, which is realizable in a two-component 40 K Fermi gas with close-by s-and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s-and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.  相似文献   

3.
Roberto Onofrio 《中国物理 B》2012,21(7):70306-070306
We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.  相似文献   

4.
We study the interplay between superfluidity and magnetism in a multicomponent gas of ultracold fermions. Ward-Takahashi identities constrain possible mean-field states describing order parameters for both pairing and magnetization. The structure of global phase diagrams arises from competition among these states as functions of anisotropies in chemical potential, density, or interactions. They exhibit first and second order phase transition as well as multicritical points, metastability regions, and phase separation. We comment on experimental signatures in ultracold atoms.  相似文献   

5.
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional(1 D) optical lattice,using a pairing fluctuation theory.We show that,besides widespread pseudogap phenomena and intermediate temperature superfluidity,the superfluid phase is readily destroyed except in a limited region of the parameter space.We find a new mechanism for pair hopping,assisted by the excessive majority fermions,in the presence of c...  相似文献   

6.
The dynamics of spin waves in ultracold gases is investigated with allowance for exchange and spin-orbit interaction. The exact basis of atomic states is used taking into account all rotational quantum numbers of the atom. The dispersion relation for spin waves is obtained for fermions and bosons in the hydro-dynamic approximation.  相似文献   

7.
贺丽  余增强 《物理学报》2017,66(22):220301-220301
各向异性超流体中的朗道临界速度并非简单地由运动方向的元激发能谱决定.在自旋-轨道耦合作用下的双分量玻色-爱因斯坦凝聚中,当系统跨过平面波相与零动量相之间的量子相变时,尽管超流声速连续变化,但垂直于自旋-轨道耦合方向的朗道临界速度会出现跳变,跳变幅度随自旋相互作用强度单调增加.根据线性响应理论,计算了凝聚体中运动杂质在不同速度下的能量耗散率,提出可以通过能量耗散观测临界速度在量子相变处的不连续性.  相似文献   

8.
9.
We consider a cold two-species atomic Fermi gas confined in a trap. We combine the Hainan coupling between the states (we assume them to be the states with different spins) with the Cooper pairing of atoms with these different spins. This opens up a new prospect for investigation of interplay between various phenomena involving Raman coupling (e.g., atom lasers, dark-state polaritons) and effects caused by Cooper pairing of particles (e.g., superfluidity). We have obtained a threshold of transition from oscillatory to amplifying behavior of matter waves.  相似文献   

10.
The Thomas-Fermi statistical method is generalized to include spin-orbit interactions. The momentum distributions are given by toroids, different for two particle spin orientations. A system of two coupled differential equations is derived by a variational procedure for the densities of the two populations. From these equations the polarization at the surface of nuclear matter is calculated, as well as the change of the nuclear surface tension due to spin-orbit coupling. Within the statistical framework the coupling strength of the spin-orbit potential is found to be in reasonable agreement with experiment by using only the experimental single-particle level order of the shell model which implies an excess of states with spin parallel to the orbital angular momentum.  相似文献   

11.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   

12.
We review our recent experimental realization and investigation of a spin orbit (SO) coupled Bose Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagathlg Ranlan lasers and controlling the different frequency of two R,aman lasers to engineer the atom light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We, observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as halhnarks of SO coupling in a Fermi gas. To clearly reveal the, property of SO coupling Fermi gas, we also study the momentmn-resolved radio-frequency spectroscopy which characterizes the energy momentum dispersion and spin composition of the quantum states. We observe the change of errmion surfaces in different helieity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracoht Fermi gas.  相似文献   

13.
Motivated by recent experiments by Lin et al., [Nature (London) 471, 83 (2011)] that engineered spin-orbit coupling in ultracold mixtures of bosonic atoms, we study the dipole oscillation of trapped spin-orbit-coupled noncondensed Bose and Fermi gases. We find that different directions of oscillation are coupled by the spin-orbit interactions. The phase difference between oscillatory motion in orthogonal directions and the trapping frequencies of the modes are shown to be related to the anomalous Hall conductivity. Our results can be used to experimentally determine the anomalous Hall conductivity for cold-atom systems.  相似文献   

14.
We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes into different manifolds separated by ?ω{⊥}, where ω{⊥} is the trapping frequency. For a weakly interacting gas, quantum states with Skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed in a spin-orbit coupled gas of ^{87}Rb atoms in a highly oblate trap.  相似文献   

15.
We show that with interface spin-orbit coupling, triplet pairing can occur in the half-metal/superconductor junction. The tunneling conductance is different from the usual Andreev reflection and strongly depends on the polarisation orientation. The probability of triplet pairing for different incident angles and zero-biased conductance are also calculated. The mechanism for the formation of the triplet pairing is that the interface spin-orbit coupling provides an effective spin-flip barrier, which couples all the transport modes in spin Nambu space. Because of its unique particle hole symmetry, this spin-orbit coupling interface effect is different from the spin-flip ferromagnetic barrier which induces zero-bias conductance vanishing and finite V-shape conductance within the energy gap.  相似文献   

16.
Recent developments in the study of ultracold Rydberg gases demand an adwanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose--Einstein condensation transition. An elec- trode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg---Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.  相似文献   

17.
We present a new model for the study of spin-orbit coupling in interacting quasi-one-dimensional systems and solve it exactly to find the spectral properties of such systems. We show that the combination of spin-orbit coupling and electron-electron interactions results in the replacement of separate spin and charge excitations with two new kinds of bosonic mixed-spin-charge excitation, and a characteristic modification of the spectral function and single-particle density of states. Our results show how manipulation of the spin-orbit coupling, with external electric fields, can be used for the experimental determination of microscopic interaction parameters in quantum wires.  相似文献   

18.
We theoretically demonstrate the formation of a new type of unconventional superconductivity in graphene materials, which exhibits a gapless property. The studied superconductivity is based on an interlayer pairing of chiral electrons in bilayer graphene, which results in an exotic s-wave spin-triplet condensate order with anomalous thermodynamic properties. These include the possibility of a temperature-induced condensation causing an increase of the pairing gap with increasing temperature and an entropy of the stable superconducting state which can be higher than its value in the normal state. Our study reveals the analogy of the interlayer superconductivity in graphene materials to the color superconductivity in dense quark matter and the gapless pairing states in nuclear matter and ultracold atomic gases.  相似文献   

19.
Jian Feng 《中国物理 B》2022,31(9):90305-090305
Topological superfluid state is different from the normal superfluid one due to the excitation energy gap on the boundary. How to obtain the topological superfluid state by using spin-orbit coupling to control the s-waves paired mass-imbalanced Fermi gas is a recent novel topic. In this paper, we study the topological superfluid phase diagram of two-dimensional mass-imbalanced Fermi gas with Rashba spin-orbit coupling at zero temperature. We find that due to the competition among mass imbalance, pairing interaction and spin-orbit coupling, there is a double-well structure in the thermodynamic potential, which affects the properties of the ground state of the system. We comprehensively give the phase diagrams of the system on the plane of spin-orbit coupling and chemical potential, and the phase diagrams on the plane of the reduced mass ratio and two-body binding energy. This study not only points out the stable region of topological superfluid state of mass-imbalanced Fermi gas, but also provides a detailed theoretical basis for better observation of topological superfluid state in experiments.  相似文献   

20.
The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi–Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi–Bose mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号