首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Jimenez  A. Rivera  A. Varez  J. Sanz   《Solid State Ionics》2009,180(26-27):1362-1371
The dependence of Li mobility on structure and composition of Li0.5 − xNaxLa0.5TiO3 perovskites (0 ≤ x ≤  0.5) has been investigated by means of neutron diffraction, nuclear magnetic resonance and impedance spectroscopy. At 300 K, all samples display a rhombohedral superstructure (R-3c S.G.), where octahedra are out of phase tilted along [111] direction of the ideal cubic cell. The elimination of the octahedral tilting is responsible for the rhombohedral–cubic transformation, detected near 1000 K. In these perovskites, La and Na cations are randomly distributed in A sites, but Li ions are fourfold coordinated at unit cell faces of the cubic perovskite. Lithium conductivity, σ300 K, decreases with the sodium content, decreasing from values typical of fast ionic conductors, 10− 3 S/cm, to those of good insulators, 10− 10 S/cm, when the interconnectivity between vacant A sites is lost (x > 0.3). In samples with x < 0.3, dc conductivity displays a non-Arrhenius behaviour, decreasing activation energy from ~ 0.37 to 0.25 eV when the sample is heated between 77 and 500 K. The temperature dependence of BLi factors shows the existence of two regimes for Li motion. Below 373 K, Li ions remain partially located near square oxygen windows that connect contiguous A sites, but above 400 K, extended Li motions become dominant. The additional decrease of activation energy from 0.25 to 0.16 eV (low-temperature 7Li NMR value), should require the full elimination of octahedral tilting which is only produced above 1000 °C.  相似文献   

2.
Angular distributions for the 163Dy(t,p) and 177Hf(t,p) reactions were measured using 17 MeV tritons from the McMaster University Tandem Van de Graaff accelerator. Reaction products were analyzed with a magnetic spectrograph and detected with photographic emulsions. Favored L=0 transitions confirmed assignments of the 5/2[523] band in 165Dy and 7/2[514] band in 179Hf. Additional L=0 transitions in each nuclide identified previously unknown 5/2 levels in 165Dy and 7/2 ones in 179Hf. Overall trends of L=0 strengths support the existence of subshell closures at neutron numbers 98 and 108. On the basis of a relatively strong L=2 transition, the Kπ=11/2 γ-vibration based on the 7/2[514] state is identified at 1689 keV in 179Hf, about 440 keV above its previously-assigned Kπ=3/2 partner.  相似文献   

3.
We present results on the production of bound states of Θ+ in nuclei using the (K+,π+) reaction. By taking into account the states obtained within a wide range of strength of the Θ+ nucleus optical potential, plus the possibility to replace different nucleons of the nucleus, we obtain an excitation spectra with clearly differentiated peaks. The magnitude of the calculated cross sections is well within reachable range.  相似文献   

4.
The cross-sections for formation of isomeric pair, 75Gem(σm) and 75Geg(σg), through 76Ge(n, 2n), 75As(n, p) and 78Se(n, α) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, α) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, αn) reactions. The higher values of σm relative to σg reveal that the transitions of the excited 75Ge from higher energy levels to metastable state (7+/2) are favored as compared to unstable ground state (1/2). The present values of cross sections for formation of 75Gem,g through (n, 2n) and (n, α) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.  相似文献   

5.
LetS be a bounded region inR N and letP={S l } i=1 m be a partition ofS into a finite number of closed subsets having piecewiseC 2 boundaries of finite (N–1)-dimensional measure. Let :SS be piecewiseC 2 onP and expanding in the sense that there exists 0<<1 such that for anyi=1,2,...,m, DT i –1<, whereDT i –1 is the derivative matrix ofT i –1 and · is the Euclidean matrix norm. We prove that for some classes of such mappings, for example, Jabtonski transformations or convexity-preserving transformations, the number of crossing points constitutes a bound for the number of ergodic absolutely continuous -invariant measures. We give examples showing that in general the simple bound of one-dimensional dynamics cannot be generalized to higher dimensions. In fact, we show that it is possible to construct piecewise expandingC 2 transformations on a fixed partition with a finite number of elements but which have an arbitrarily large number of ergodic, absolutely continuous invariant measures.  相似文献   

6.
This paper reports our new observation of the , 13Δg (v = 2–4), and 23Πg (v = 2–8) states of 6Li7Li by continuous wave perturbation facilitated optical–optical double resonance spectroscopy. Combining our new experimental term values of 6Li7Li with the available experimental data of 6Li2 and 7Li2, molecular constants and potential energy curves by Rydberg–Klein–Rees and direct-potential-fit techniques have been determined. Born-Oppenheimer breakdown parameters of the Li2 13Δg and 23Πg states are calculated.  相似文献   

7.
The dependence of the strangeness production on the number of nucleons involved in the annihilation process is investigated experimentally in and 4He annihilation at rest. In He, annihilations with the involvement of one and several nucleons (B=0 and B1 baryonic number, respectively) are identified. Strangeness enhancement factors, i.e., ratios of K±, , K0* and ϕ meson yields in 4He to the same yields in H, are derived for final states containing 4 charged mesons (2π+2π, π+ππK±, π+πK+K). This work completes a previous investigation concerning charged kaon production in meson final states without neutral mesons. The results are compared with our previous ones and with results found in experiments on heavy-ion collisions. It is put in evidence that the strangeness content in the energy blob created by the annihilation has a lower or higher intensity depending on the reaction channel: for instance, π+ππK± production increases with B and π+πK+K production decreases. The maximum enhancement factor (about 22) is found for π+ππK+ without neutral mesons. This value (as well as that concerning π+π+πK) is definitely higher than the values predicted by theoretical investigations based on the formation of a highly excited hadronic gas in the annihilation on few nucleons and values found in heavy-ion collisions. Is it the signature of the formation of quark–gluon plasma?  相似文献   

8.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

9.
A recently proposed 13C–1H recoupling sequence operative under fast magic-angle spinning (MAS) [K. Takegoshi, T. Terao, Solid State Nucl. Magn. Reson. 13 (1999) 203–212.] is applied to observe 13C–1H and 15N–1H dipolar powder patterns in the 1H–15N–13C–1H system of a peptide bond. Both patterns are correlated by 15N-to-13C cross polarization to observe one- or two-dimensional (1D or 2D) correlation spectra, which can be simulated by using a simple analytical expression to determine the H–N–C–H dihedral angle. The 1D and 2D experiments were applied to N-acetyl[1,2-13C,15N] -valine, and the peptide φ angle was determined with high precision by the 2D experiment to be ±155.0°±1.2°. The positive one is in good agreement with the X-ray value of 154°±5°. The 1D experiment provided the value of φ=±156.0°±0.8°.  相似文献   

10.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

11.
A remarkable enhancement of sensitivity can be often achieved in 29Si solid-state NMR by applying the well-known Carr–Purcell–Meiboom–Gill (CPMG) train of rotor-synchronized π pulses during the detection of silicon magnetization. Here, several one- and two-dimensional (1D and 2D) techniques are used to demonstrate the capabilities of this approach. Examples include 1D 29Si{X} CPMAS spectra and 2D 29Si{X} HETCOR spectra of mesoporous silicas, zeolites and minerals, where X = 1H or 27Al. Data processing methods, experimental strategies and sensitivity limits are discussed and illustrated by experiments. The mechanisms of transverse dephasing of 29Si nuclei in solids are analyzed. Fast magic angle spinning, at rates between 25 and 40 kHz, is instrumental in achieving the highest sensitivity gain in some of these experiments. In the case of 29Si–29Si double-quantum techniques, CPMG detection can be exploited to measure homonuclear J-couplings.  相似文献   

12.
The formation of deeply-bound antikaonic nuclear states in nuclear (K,N) reactions is investigated theoretically within a distorted-wave impulse approximation (DWIA), considering the isospin properties of the Fermi-averaged elementary amplitudes. We calculate the formation cross sections of the deeply-bound states by the (K,N) reactions on the nuclear targets, 12C and 28Si, at incident K lab momentum pK=1.0 GeV/c and θlab=0°, introducing a complex effective nucleon number Neff for unstable bound states in the DWIA. The results show that the deeply-bound states can be populated dominantly by the (K,n) reaction via the total isoscalar ΔT=0 transition owing to the isospin nature of the amplitudes, and that the cross sections described by ReNeff and ArgNeff enable to deduce the structure of the nuclear states; the calculated inclusive nucleon spectra for a deep -nucleus potential do not show distinct peak structure in the bound region. The few-body and states formed in (K,N) reactions on s-shell nuclear targets, 3He, 3H and 4He, are also discussed.  相似文献   

13.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

14.
Recently there are several evidences of the increase of the total cross section σtot to be log2s consistent with the Froissart unitarity bound, and the COMPETE collaborations in the PDG have further assumed σtotBlog2(s/s0) to extend its universal rise with a common value of B for all the hadronic scatterings. However, there is no rigorous proof yet based only on QCD. Therefore, it is worthwhile to prove this universal rise of σtot even empirically. In this Letter we attempt to obtain the value of B for πp scattering, Bπp, with reasonable accuracy by taking into account the rich πp data in all the energy regions. We use the finite-energy sum rule (FESR) expressed in terms of the πp scattering data in the low and intermediate energies as a constraint between high-energy parameters. We then have searched for the simultaneous best fit to the σtot and ρ ratios, the ratios of the real to imaginary parts of the forward scattering amplitudes. The lower energy data are included in the integral of FESR, the more precisely determined is the non-leading term such as logs, and then helps to determine the leading terms like log2s. We have derived the value of Bπp as Bπp=0.311±0.044 mb. This value is to be compared with the value of B for scattering, Bpp, in our previous analysis [M. Ishida, K. Igi, Eur. Phys. J. C 52 (2007) 357], Bpp=0.289±0.023 mb. Thus, our result appears to support the universality hypothesis.  相似文献   

15.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

16.
Passively Q-switched output of a flashlamp-pumped 1.319 μm Nd:YAG laser is realized by using Co2+:LaMgAl11O19 (Co:LMA) as saturable absorber. When initial transmission of the saturable absorber T0 is 78%, a Q-switched output pulse with pulse width (FWHM) 44.8 ns and pulse energy 17.4 mJ is obtained, corresponding to 19.3% of the free-running energy under the equal pumping energy of 45.4 J. The experimental results show that the higher T0 will result in a lower pumping threshold of the laser, but lower T0 can make the laser generate pulses with higher single-pulse energy, narrower pulse width, and accordingly higher peak power.  相似文献   

17.
Xiaoping Kang  Baida Lü   《Optik》2005,116(5):232-236
On the basis of the second-order moment of the power density and in the use of the series expansion, the expressions for the beam width, far-field divergence angle and M2 factor of nonparaxial Hermite–Gaussian (H–G) beams are derived and expressed in a sum of the series of the Gamma function. The theoretical results are illustrated with numerical examples. The M2 factor of nonparaxial H–G beams depends not only on the beam order m, but also on the waist-width to wavelength ratio w0/λ. The far-field divergence angles of nonparaxial H–G beams with even and odd orders approach their upper limits θmax=63.435 and 73.898, respectively, which results in M2<1 as w0/λ→0. For the special case of m=0 our results reduce to those of nonparaxial Gaussian beams. Some problems related to the characterization of the nonparaxial beam quality are also discussed.  相似文献   

18.
High resolution absorption spectra of the (4, 20) band in the second negative system (A2ΠuX2Πg) of O2+ cation were measured and analyzed in the range of 11 900–12 300 cm–1 via optical heterodyne velocity modulation spectroscopy. Precise molecular constants of the levels involved were obtained by a nonlinear least-squares fitting procedure combining with our previous spectra of the (4, 19) and (6, 20) bands.  相似文献   

19.
Flux pinning in melt-processed (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy “NEG-123” + 35 mol% Gd2BaCuO5 “NEG-211” (70 nm in size) composite doped by TiO3, MoO3 and Nb2O5 achieved record values. The optimum values of all three dopands were found to be around 0.1 mol%. Transmission electron microscope (TEM) analysis found clouds of <10 nm sized particles in the NEG-123 matrix, shifting the pinning particle size distribution to significantly lower values. TEM by energy dispersive X-ray spectroscopy (EDX) analysis clarified that these nanoparticles contained a significant amount of Nb, Mo, and Ti. Appearance of nanometer-sized defects correlated with a significantly improved flux pining at low and medium magnetic fields, which was particularly significant at high temperatures. In the Nb-doped sample, a record Jc value of 925 kA/cm2 at the secondary peak field (4.5 T) was achieved at 65 K, 640 kA/cm2 at zero field at 77 K, and 100 kA/cm2 at 90.2 K, the last value having been up to now considered as a good standard for REBa2Cu3Oy “RE-123” materials at 77 K. The greatly improved JcB performance in Nb/Mo/Ti doped samples can be easily translated to large-scale LRE-123 (LRE = light rare earths, Nd, Eu, Gd, Sm) blocks intended for real superconducting super-magnets applications.  相似文献   

20.
A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the 1H–1H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH2 or CH3 moiety. Experimental CHHC buildup curves are presented for l-tyrosine·HCl samples where either all or only one in 10 molecules are U–13C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic 1H chemical shifts) is demonstrated for the initial buildup (tmix < 100 μs) of CHHC peak intensity corresponding to an intramolecular close (2.5 Å) H–H proximity. Differences in the initial CHHC buildup are observed between the one in 10 dilute and 100% samples for cases where there is a close intermolecular H–H proximity in addition to a close intramolecular H–H proximity. For the dilute sample, CHHC cross-peak intensities tended to significantly lower values for long mixing times (500 μs) as compared to the 100% sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio Nobs/Ntot between the number of protons that are directly attached to a 13C nucleus and hence contribute significantly to the observed 13C CHHC NMR signal, and the total number of 1H spins into the system. 1H–1H magnetization exchange curves extracted from CHHC spectra for the 100% l-tyrosine·HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast buildup being observed for the shortest intramolecular distances (2.5 Å) and slower, yet observable buildup for the longer intermolecular distances (up to 5 Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号