首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近红外光谱法分析慈竹物理力学性质的研究   总被引:2,自引:0,他引:2  
采用近红外光谱法对慈竹密度、抗弯强度和顺纹抗拉强度进行快速预测.利用反向区间偏最小二乘法(BiPIS)优选光谱区间,建立原始光谱和不同预处理(一阶微分、二阶微分、卷积平滑和归一化处理)光谱分析模型,同时应用偏最小二乘法(PLS)在全谱范围350~2 500 nm建立各光谱分析模唰,并对所建模型进行比较分析.结果表明:同...  相似文献   

2.
The objective of this study was to verify the influence of photoactivation with the argon ion laser on shrinkage stress (SS), followed by evaluation of Vickers microhardness (VM), percentage of maximum hardness (PMH), flexural strength (FS), and flexural modulus (FM) of a composite resin. The study groups were: L1-laser at 200 mW for 10 seconds; L2-laser at 200 mW for 20 seconds; L3-laser at 250 mW for 10 seconds; L4-laser at 250 mW for 20 seconds; H-halogen light at 275 mW for 20 seconds. Data were analyzed by ANOVA/Tukey’s test (α=5%). The values of SS (MPa) were statistically lower for the group L3 (1.3)c, followed by groups L1 (2.7)b, L4 (3.4)a, b, L2 (3.7)a, and H (4.5)a. There was no difference in the values of VM when the same time of photoactivation was used, with respective values being L1=70.1a, L2=78.1b, L3=69.9a, L4=78.1b and H=79.9b. All groups showed a PMH of at least 80%. Only the group L1 showed differences in FS (MPa) and FM (GPa), the respective values of 86.2 and 5.4 being lower. Therefore, the use of argon ion laser had influenced the composite resin polymerization. The L3 group presented adequate mechanical properties and minimum SS, reducing the clinical working time for photoactivation of restorations with the tested resin by 50%.  相似文献   

3.
In this paper, we present the experimental results on the study of mechanical properties of polymer-based nanocomposite materials with carbon nanotube or ultradisperse diamond inclusions. Tests are performed by nanoindentation methods. The results obtained for nanocomposites and a polymer used as a matrix in nanocomposites are compared.  相似文献   

4.
5.
Resonant ultrasound spectroscopy (RUS) is a method whereby the elastic tensor of a sample is extracted from a set of measured resonance frequencies. RUS has been used successfully to determine the elastic properties of single crystals and homogeneous samples. In this paper, we study the application of RUS to macroscopic samples of mesoscopically inhomogeneous materials, specifically rock. Particular attention is paid to five issues: the scale of mesoscopic inhomogeneity, imprecision in the figure of the sample, the effects of low Q, optimizing the data sets to extract the elastic tensor reliably, and sensitivity to anisotropy. Using modeling and empirical testing, we find that many of the difficulties associated with using RUS on mesoscopically inhomogeneous materials can be mitigated through the judicious choice of sample size and sample aspect ratio.  相似文献   

6.
The applicability of resonant ultrasound spectroscopy on materials with weak spatial gradients in elastic coefficients and density is analyzed. It is shown that such gradients do not affect measurably the resonant spectrum but have a significant impact on the modal shapes. A numerical inverse procedure is proposed to explore the possibility of reconstructing the gradients from experimentally obtained modal shapes. This procedure is tested on synthetic data and applied to determine the gradient of the shear modulus in a continuously graded silicon nitride ceramic material. The results are in a good agreement with the gradient calculated for the examined material theoretically as well as with the results of other experimental methods.  相似文献   

7.
One of the most important undertakings for materials is the measurement of the elastic behavior. As derivatives of the free energy with respect to atomic displacements, the elastic properties are closely connected to the thermodynamic properties of the material. Elastic behavior is a sensitive probe of the lattice environment in which all solid state phenomena occur, particularly in the vicinity of a phase transition. A useful method for measuring elastic properties is resonant ultrasound spectroscopy (RUS). Some novel materials to which RUS might be applied are often fragile or chemically reactive so that they cannot be polished into the shapes required by conventional RUS; for such cases a finite element method may be used. In this paper a discussion and test of a finite element method for RUS with arbitrarily shaped samples is provided.  相似文献   

8.
9.
The mechanical properties of cardiac muscle during ultrasonic irradiation have been studied in vitro. Left anterior papillary muscle from normal rats was suspended in buffered lactated Ringers solution equilibrated with 95% O2, and 5% CO2 and maintained at 20 degrees C. The muscles were stimulated to contract isometrically three times per minute at the length which produced maximum tension. Each muscle was irradiated with a MHz ultrasound at an average power of 2.4 Wcm-2 for a period of 10 min with a 10 min recovery period. Irradiation caused an average increase in temperature of the muscle of 1.7 +/- 0.2 degrees C (mean +/- SEM). Irradiation caused the resting tension (1.46 +/- 0.13g) to decrease by 17.8 +/- 4.7% and the developed tension (3.33 +/- 0.61g) to decrease by 4.1 +/- 0.9%. Since changes in contractile properties have been reported with temperature the bath temperature was raised and changes in contraction observed. When compensated for effects of temperature, the changes in resting tension became - 13.3 +/- 4.1% while the change in developed tension became + 1.6 +/- 2.3%. The change in resting tension is highly significant (p less than 0.05 paired t-test) while the change in developed tension is not. Thus 1 MHz ultrasound at an intensity of 2.4 Wcm-2 appears to affect resting tension of cardiac muscle without affecting the active tension. Since changes in cardiac mechanics of this type have not been described previously the effects of ultrasound appears to be unique.  相似文献   

10.
We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe2O3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe2O3. As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials.  相似文献   

11.
复合薄膜因其可具有比单组份薄膜更加优异的性能而得到广泛的应用。通过以膜层的防护、催化、电学、光学以及力学性能等复合思想为切入点,阐述了通过膜层的复合掺杂旨在增强合金的抗腐蚀性,提高润滑摩擦性能,改善膜层的导电性能以及进行光学薄膜折射率和光谱吸收的调控,增强膜层的硬度及拉伸强度等机械性能的方法。对国内外的相关前沿成果进行简要介绍,并对复合薄膜的未来发展进行展望,为相关领域的研究提供参考。  相似文献   

12.
The Hashin-Shtrikman and Walpole bounds for the transport properties and bulk modulus of multicomponent composite materials are shown to be attained in a wide range of cases. Thus in these cases the bounds are the best possible bounds that can be given in terms of the properties of the components and the volume fractions. For three-component materials new bounds are conjectured. The conjectured bounds are presumed to apply in the cases where the Hashin-Shtrikman and Walpole bounds are not attained.  相似文献   

13.
Nakamura N  Ogi H  Hirao M 《Ultrasonics》2004,42(1-9):491-494
We propose an advanced method to determine the elastic-stiffness coefficients Cij of thin films using resonance ultrasound spectroscopy (RUS). It uses free-vibration resonance frequencies of a film/substrate layered solid and derives inversely the film's Cij from the resonance frequencies. We develop a piezoelectric tripod consisting of two pinducers and one support to place the specimen on it and measure the resonance frequencies with high enough accuracy. Furthermore, we achieve mode identification by measuring deformation distributions on the vibrating specimen surface using laser-Doppler interferometry. Accurate measurements of frequencies and correct mode identification are the keys for deducing reliable Cij of the film. We applied this technique to copper thin films deposited of Si substrates. The resulting film's Cij are considerably smaller than the bulk's Cij and show anisotropy between the out-of-plane direction and in-plane direction.  相似文献   

14.
In this study, the electrical, optical and mechanical properties of polystyrene (PS) thin films added graphene nanoplatelet (GNP) have been investigated. Surface conductivity (σ), absorbance intensity (A) and tensile modulus of these composite films have increased with increasing the content of GNP in the composite. The increase in the electrical and optical properties of the PS/GNP composite films has been interpreted by site and classical percolation theory, respectively. The electrical and the optical percolation thresholds of PS/GNP composite films were determined as Rσ?=?23.0?wt.% and Rop?=?13.0?wt.%, respectively. While the conductivity results have been attributed to the classical percolation theory, the optical results have attributed to the site percolation theory. The electrical (βσ) and the optical (βop) critical exponents were calculated as 2.54 and 0.40, respectively. The tensile modulus and the tensile strength of the PS/GNP composites increased with the increasing of GNP content in the PS. But, the toughness of the composites fluctuated with GNP addition.  相似文献   

15.
Xu X  Zhang H  Hemmer P  Qing DK  Kim C  Wang LV 《Optics letters》2007,32(6):656-658
Ultrasound-modulated optical tomography is a developing hybrid imaging modality that combines high optical contrast and good ultrasonic resolution for imaging soft biological tissue. We developed a photorefractive-crystal-based, time-resolved detection scheme with the use of a millisecond long ultrasound burst to image both the optical and the mechanical properties of biological tissues, with improved detection efficiency of ultrasound-tagged photons.  相似文献   

16.
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films’ composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352 GPa at 6.2 at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films’ mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.  相似文献   

17.
The cross-section eigenmodes of micrometric cylinders were measured in the range of several tens of MHz to about 0.5 GHz. The vibrations were excited using subnanosecond laser pulses. The cross-section eigenmodes were simulated using finite element modeling in a 2D geometry. Using the method of resonant ultrasound spectroscopy, the vibration spectrum of an aluminum wire of diameter 33μm served to determine Young’s modulus and Poisson’s ratio with a precision of 0.7% and 0.3%, respectively. The calculated and measured frequencies of cross-section eigenmodes were fitted with a precision better than 0.5% in the 50–500 MHz range.  相似文献   

18.
A new optical characterization of the behavior of single ultrasound contrast bubbles is presented. The method consists of insonifying individual bubbles several times successively sweeping the applied frequency, and to record movies of the bubble response up to 25 million frames/s with an ultrahigh speed camera operated in a segmented mode. The method, termed microbubble spectroscopy, enables to reconstruct a resonance curve in a single run. The data is analyzed through a linearized model for coated bubbles. The results confirm the significant influence of the shell on the bubble dynamics: shell elasticity increases the resonance frequency by about 50%, and shell viscosity is responsible for about 70% of the total damping. The obtained value for shell elasticity is in quantative agreement with previously reported values. The shell viscosity increases significantly with the radius, revealing a new nonlinear behavior of the phospholipid coating.  相似文献   

19.
Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.  相似文献   

20.
We developed coarse-grained (CG) molecular representations of mixtures of diglycidyl ether of bisphenol-A (DGEBA) and poly(oxypropylene) diamine (POP-DA) for use in CG molecular dynamics (MD) simulations. In the CG representation, DGEBA is comprised of three beads of two types and POP-DA also by three beads of two types. Atomistic MD of liquid systems was performed to derive intra- and inter-bead potentials via Boltzmann inversion. While the bonded potentials, composed of bond stretching and angle bending, were parameterized directly from the distribution functions of all atomistic molecular dynamics trajectories, the non-bonded potentials were derived from the iterative Boltzmann Inversion with a given set of coarse-grained interactions. CG systems correctly reproduced liquid and crosslinked densities. Under uniaxial tension, the Young's modulus of the CG systems was much lower than the experimental value, and we show this arises from the assumed form of the extrapolated regions of the CG potentials. By stiffening these regions, we increased the CG Young's modulus of the crosslinked systems without sacrificing the correct prediction of density. This suggests that transferrable CG potentials can be optimized for use in non-equilibrium MD for property estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号