首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We describe a technique which allows a direct measurement of the relative Fermi energy in an electron system by employing a double-layer heterostructure. We illustrate this method by using a graphene double layer to probe the Fermi energy as a function of carrier density in monolayer graphene, at zero and in high magnetic fields. This technique allows us to determine the Fermi velocity, Landau level spacing, and Landau level broadening. We find that the N=0 Landau level broadening is larger by comparison to the broadening of upper and lower Landau levels.  相似文献   

2.
A new approach, which makes the Hamiltonian of the Peierls tight-binding model change into a band matrix, is used to investigate the Landau levels in a AA-stacked bilayer graphene. The interlayer atomic hoppings could induce an energy gap, the asymmetry of the Landau levels about the chemical potential, the random variation in the level spacing, more fourfold degenerate Landau levels at low energy, and the oscillatory Landau levels and the complicated state degeneracies at moderate energy. For the low-energy Landau levels, their dependence on the quantum number and the field strength cannot be well characterized by a simple power law. They exhibit a anomalous oscillation during the variation of the magnetic field. The main features of the magnetoelectronic states are directly reflected in density of states.  相似文献   

3.
The electron mass operator in a strong magnetic field is calculated. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation. The effect of the electron dynamical mass generation by a magnetic field is investigated. In a model with N charged fermions, it is shown that some critical number N(cr) exists for any value of the electromagnetic coupling constant alpha, such that the fermion dynamical mass is generated with a doublet splitting for NN(cr), thus leaving the chiral symmetry unbroken.  相似文献   

4.
We study the Landau level broadening by analyzing the Shubnikov-de Haas oscillations in a gated AlGaAs/GaAs parabolic quantum well structure when only one electronic subband is occupied. Small-angle scattering is determined to be important in this system. The Shubnikov-de Haas oscillations are described equally well by employing Gaussian or Lorentzian broadening of the Landau levels at low magnetic field where the quantum localization effect is not important. A possible explanation is that the electron-electron interactions lead to the overlapping of adjacent Landau levels and one can not distinguish between the two broadening types.  相似文献   

5.
The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a "smooth" function N[over ](E) and a "fluctuation." Berry and Keating have shown that the asymptotic expansion of N[over ](E) counts states of positive energy less than E in a "regularized" semiclassical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states "missing" from a continuum. Here we show how the "absorption spectrum" model of Connes emerges as the lowest Landau level limit of a specific quantum-mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).  相似文献   

6.
Heisenberg algebra for noncommutative Landau problem   总被引:4,自引:0,他引:4       下载免费PDF全文
李康  曹小华  汪东燕 《中国物理》2006,15(10):2236-2239
The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.  相似文献   

7.
The carrier distribution over Landau levels was studied in resonant tunneling GaAs/AlGaAs quantum well structures under tunneling pumping of the upper subband. The numerical calculations of the Landau levels population for various values of pumping intensity (tunneling time), magnetic field and the structure doping were carried out. The effect of various scattering mechanisms, as two-electron (electron–electron scattering) as single-electron (acoustic phonon and interface roughness scattering) ones on level population was studied. The population inversion between the zeroth Landau level of the upper subband and the first Landau level of the lowest subband was shown to exist in wide range of the magnetic field strength thus providing the possibility of wide range tunable stimulated terahertz emission.  相似文献   

8.
Magnetodrag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At nu=3/2 clear T(4/3) dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.  相似文献   

9.
Transverse magnetoconductivity σxx and Hall effect in n-type inversion layers of Si(100) MOSFET are measured for various source-drain fields between 0.08 and 40 V/cm under magnetic fields up to 150 kOe at 1.4 K. Conductivity peaks in low Landau levels are in good agreement with theory. Effect of the source-drain field in the magnetoconductivity is found to be very important in higher Landau levels as well as in the appearance of the lowest Landau level peak. Immobile electrons are clearly observed in conductivity bottoms. Electrode geometry effect for Hall effect measurement under strong magnetic fields is discussed.  相似文献   

10.
With the imminent advent of mesoscopic rotating Bose-Einstein condensates in the lowest Landau level regime, we explore lowest Landau level vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean-field features are exposed at filling factors >1. For example, near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantizing a mean-field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number, and ellipticity.  相似文献   

11.
The kinetics of intersubband relaxation of electron energy has been studied in the system of Landau levels lying below the optical phonon energy. The relaxation character in the considered system is revealed to differ qualitatively from that in the two-dimensional continuous subband of the quantum well. In particular, the mechanisms of electron subsystem thermalization and energy relaxation in the system of Landau levels are qualitatively different, and the electron subsystem relaxation time exceeds the thermalization time by several orders of magnitude.  相似文献   

12.
The amplitudes of the Shubnikov—de Haas conductivity minima are analysed for n-type inversion layers in Si 〈100〉 MOS devices. Thermal excitation between adjacent Landau levels, conduction through extended tail states and activated conduction from localised tail states are all detected in different magnetic field and temperature ranges. The minimum metallic conductivity found for the lowest spin extremum agrees well with theory but the values for higher Landau levels are lower than expected.  相似文献   

13.
The energy dependence of the electronic scattering time is probed by Landau level spectroscopy in quasineutral multilayer epitaxial graphene. From the broadening of overlapping Landau levels we find that the scattering rate 1/τ increases linearly with energy ?. This implies a surprising property of the Landau level spectrum in graphene-the number of resolved Landau levels remains constant with the applied magnetic field. Insights are given about possible scattering mechanisms and carrier mobilities in the graphene system investigated.  相似文献   

14.
We investigate the photon polarization tensor at finite temperatures in the presence of a static and homogeneous external magnetic field. In our scheme, the summing of the Matsubara frequency is performed after Poisson resummation, which is easily completed and converges quickly. Moreover, the behaviors of finite Landau levels are presented explicitly. It shows a convergence while summing infinite Landau levels. Consequently, there is no necessity to truncate the Landau level in a numerical estimation. At zero temperature, the lowest Landau level (LLL) approximation is analytically satisfied for the vacuum photon polarization tensor. However, we examine that the LLL approximation is not enough for the thermal polarization tensor. The thermal tensor obtains non-trivial contributions from the finite-n Landau levels. And, photon spectra gains a large imaginary contribution in thermal medium, which is the so-called Landau damping. Finally, it is argued that the summation of Matsubara frequency is not commuted with Landau level ones, such conjecture is excluded in our calculations.  相似文献   

15.
The quantum Hall effect is usually observed when a two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{1-y}Mn{y}Te quantum wells, without an external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.  相似文献   

16.
The carrier distribution over Landau levels was studied in resonant tunneling GaAs/AlGaAs quantum well structures under tunneling pumping of the upper subband. The numerical calculations of the Landau level populations for various values of pumping intensity (tunneling time), magnetic field and structure doping were carried out. The population inversion between zeroth Landau level of the upper subband and the first Landau level of the lowest subband was shown to exist in wide range of the magnetic field strength. The effect of various scattering mechanisms, both two-particle (electron-electron scattering) and single-particle (acoustic phonon and interface roughness scattering) ones, on level population was studied. The way of lifting the selection rule forbidding the inter-Landau level terahertz transitions of interest and achieving considerable values of the dipole matrix element is proposed.  相似文献   

17.
The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving the Schrodinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues.  相似文献   

18.
The Landau problem in non-commutative quantum mechanics (NCQM) is studied.First by solving the Schr(o)dinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity.Then we discuss the noncommutative phase space case,namely,space-space and momentum-momentum non-commutative case,and we get the explicit expression of the Hamfltonian as well as the corresponding eigenfunctions and eigenvalues.  相似文献   

19.
Magnetoconductance of a small open lateral dot is studied both theoretically and experimentally for the conditions when the dot contains down to 15 electrons. We confirm the existence of a new regime for open dots in which the transport through the structure occurs through individual eigenstates of the corresponding closed dot. In particular, at low magnetic fields the characteristic features in the conductance are related to the underlying eigenspectrum shells. When the number of modes in the leads is reduced more detailed structures within the shells due to single eigenlevels becomes discernible. At higher fields Landau level condensation is evident as well as the crossing of levels collapsing to the different Landau levels.  相似文献   

20.
The resonant tunneling of electrons through quasistationary levels in the valence band of a quantum well in double-barrier structures based on III–V materials with type-II heterojunctions is considered in a quantizing magnetic field directed perpendicularly to the interfaces. The transmission coefficients of the tunnel structure for transitions from states corresponding to different Landau levels are calculated using the Kane model. It is shown that transitions with a unit change in the Landau level index n as a result of mixing of the wave functions of states with opposite spin orientations are possible on the interfaces due to spin-orbit coupling. The probability of such transitions can be comparable to the probability of transitions without a change in the Landau level index for InAs/AlGaSb/GaSb resonant-tunneling structures. Fiz. Tverd. Tela (St. Petersburg) 40, 2121–2126 (November 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号